adding dummy columns to the original dataframe

前端 未结 1 1715
予麋鹿
予麋鹿 2020-12-08 03:52

I have a dataframe looks like this:

             JOINED_CO GENDER    EXEC_FULLNAME  GVKEY  YEAR  CONAME  BECAMECEO  REJOIN   LEFTOFC    LEFTCO  RELEFT    REASON         


        
相关标签:
1条回答
  • 2020-12-08 04:56
    In [77]: df = pd.concat([df, pd.get_dummies(df['YEAR'])], axis=1); df
    Out[77]: 
          JOINED_CO GENDER    EXEC_FULLNAME  GVKEY  YEAR    CONAME  BECAMECEO  \
    5622        NaN   MALE   Ira A. Eichner   1004  1992  AAR CORP   19550101   
    5622        NaN   MALE   Ira A. Eichner   1004  1993  AAR CORP   19550101   
    5622        NaN   MALE   Ira A. Eichner   1004  1994  AAR CORP   19550101   
    5622        NaN   MALE   Ira A. Eichner   1004  1995  AAR CORP   19550101   
    5622        NaN   MALE   Ira A. Eichner   1004  1996  AAR CORP   19550101   
    5622        NaN   MALE   Ira A. Eichner   1004  1997  AAR CORP   19550101   
    5622        NaN   MALE   Ira A. Eichner   1004  1998  AAR CORP   19550101   
    5623        NaN   MALE  David P. Storch   1004  1992  AAR CORP   19961009   
    5623        NaN   MALE  David P. Storch   1004  1993  AAR CORP   19961009   
    5623        NaN   MALE  David P. Storch   1004  1994  AAR CORP   19961009   
    5623        NaN   MALE  David P. Storch   1004  1995  AAR CORP   19961009   
    5623        NaN   MALE  David P. Storch   1004  1996  AAR CORP   19961009   
    
          REJOIN   LEFTOFC    LEFTCO  RELEFT    REASON  PAGE  1992  1993  1994  \
    5622     NaN  19961001  19990531     NaN  RESIGNED    79     1     0     0   
    5622     NaN  19961001  19990531     NaN  RESIGNED    79     0     1     0   
    5622     NaN  19961001  19990531     NaN  RESIGNED    79     0     0     1   
    5622     NaN  19961001  19990531     NaN  RESIGNED    79     0     0     0   
    5622     NaN  19961001  19990531     NaN  RESIGNED    79     0     0     0   
    5622     NaN  19961001  19990531     NaN  RESIGNED    79     0     0     0   
    5622     NaN  19961001  19990531     NaN  RESIGNED    79     0     0     0   
    5623     NaN       NaN       NaN     NaN       NaN    57     1     0     0   
    5623     NaN       NaN       NaN     NaN       NaN    57     0     1     0   
    5623     NaN       NaN       NaN     NaN       NaN    57     0     0     1   
    5623     NaN       NaN       NaN     NaN       NaN    57     0     0     0   
    5623     NaN       NaN       NaN     NaN       NaN    57     0     0     0   
    
          1995  1996  1997  1998  
    5622     0     0     0     0  
    5622     0     0     0     0  
    5622     0     0     0     0  
    5622     1     0     0     0  
    5622     0     1     0     0  
    5622     0     0     1     0  
    5622     0     0     0     1  
    5623     0     0     0     0  
    5623     0     0     0     0  
    5623     0     0     0     0  
    5623     1     0     0     0  
    5623     0     1     0     0  
    

    If you'd like to delete the YEAR column, then you could follow this up with del df['YEAR']. Or, drop the YEAR column from df before calling concat:

    df = pd.concat([df.drop('YEAR', axis=1), pd.get_dummies(df['YEAR'])], axis=1)
    
    0 讨论(0)
提交回复
热议问题