I\'m reading some automated weather data from the web. The observations occur every 5 minutes and are compiled into monthly files for each weather station. Once I\'m done pa
This adds the index as a dataframe column, drops duplicates on that, then removes the new column:
df = df.reset_index().drop_duplicates(subset='index', keep='last').set_index('index').sort_index()
Note that the use of .sort_index() above at the end is as needed and is optional.
Oh my. This is actually so simple!
grouped = df3.groupby(level=0)
df4 = grouped.last()
df4
A B rownum
2001-01-01 00:00:00 0 0 6
2001-01-01 01:00:00 1 1 7
2001-01-01 02:00:00 2 2 8
2001-01-01 03:00:00 3 3 3
2001-01-01 04:00:00 4 4 4
2001-01-01 05:00:00 5 5 5
Follow up edit 2013-10-29
In the case where I have a fairly complex MultiIndex, I think I prefer the groupby approach. Here's simple example for posterity:
import numpy as np
import pandas
# fake index
idx = pandas.MultiIndex.from_tuples([('a', letter) for letter in list('abcde')])
# random data + naming the index levels
df1 = pandas.DataFrame(np.random.normal(size=(5,2)), index=idx, columns=['colA', 'colB'])
df1.index.names = ['iA', 'iB']
# artificially append some duplicate data
df1 = df1.append(df1.select(lambda idx: idx[1] in ['c', 'e']))
df1
# colA colB
#iA iB
#a a -1.297535 0.691787
# b -1.688411 0.404430
# c 0.275806 -0.078871
# d -0.509815 -0.220326
# e -0.066680 0.607233
# c 0.275806 -0.078871 # <--- dup 1
# e -0.066680 0.607233 # <--- dup 2
and here's the important part
# group the data, using df1.index.names tells pandas to look at the entire index
groups = df1.groupby(level=df1.index.names)
groups.last() # or .first()
# colA colB
#iA iB
#a a -1.297535 0.691787
# b -1.688411 0.404430
# c 0.275806 -0.078871
# d -0.509815 -0.220326
# e -0.066680 0.607233
If anyone like me likes chainable data manipulation using the pandas dot notation (like piping), then the following may be useful:
df3 = df3.query('~index.duplicated()')
This enables chaining statements like this:
df3.assign(C=2).query('~index.duplicated()').mean()
Remove duplicates (Keeping First)
idx = np.unique( df.index.values, return_index = True )[1]
df = df.iloc[idx]
Remove duplicates (Keeping Last)
df = df[::-1]
df = df.iloc[ np.unique( df.index.values, return_index = True )[1] ]
Tests: 10k loops using OP's data
numpy method - 3.03 seconds
df.loc[~df.index.duplicated(keep='first')] - 4.43 seconds
df.groupby(df.index).first() - 21 seconds
reset_index() method - 29 seconds
I would suggest using the duplicated method on the Pandas Index itself:
df3 = df3[~df3.index.duplicated(keep='first')]
While all the other methods work, the currently accepted answer is by far the least performant for the provided example. Furthermore, while the groupby method is only slightly less performant, I find the duplicated method to be more readable.
Using the sample data provided:
>>> %timeit df3.reset_index().drop_duplicates(subset='index', keep='first').set_index('index')
1000 loops, best of 3: 1.54 ms per loop
>>> %timeit df3.groupby(df3.index).first()
1000 loops, best of 3: 580 µs per loop
>>> %timeit df3[~df3.index.duplicated(keep='first')]
1000 loops, best of 3: 307 µs per loop
Note that you can keep the last element by changing the keep argument to 'last'.
It should also be noted that this method works with MultiIndex as well (using df1 as specified in Paul's example):
>>> %timeit df1.groupby(level=df1.index.names).last()
1000 loops, best of 3: 771 µs per loop
>>> %timeit df1[~df1.index.duplicated(keep='last')]
1000 loops, best of 3: 365 µs per loop
Unfortunately, I don't think Pandas allows one to drop dups off the indices. I would suggest the following:
df3 = df3.reset_index() # makes date column part of your data
df3.columns = ['timestamp','A','B','rownum'] # set names
df3 = df3.drop_duplicates('timestamp',take_last=True).set_index('timestamp') #done!