I am trying to use Spark Cassandra Connector in Spark 1.1.0.
I have successfully built the jar file from the master branch on GitHub and have gotten the included dem
If you want to avoid stoppping/starting the context in the shell you can also add it into your spark properties in:
{spark_install}/conf/spark-defaults.conf
spark.cassandra.connection.host=192.168.10.10
The following steps describe how to setup a server with both a Spark Node and a Cassandra Node.
Setting Up Open Source Spark
This assumes you already have Cassandra setup.
Step 1: Download and setup Spark
Go to http://spark.apache.org/downloads.html.
a) To make things simple, we will use one of the prebuilt Spark packages. Choose Spark version 2.0.0 and Pre-built for Hadoop 2.7 then Direct Download. This will download an archive with the built binaries for Spark.
b) Extract this to a directory of your choosing. I will put mine in ~/apps/spark-1.2
c) Test Spark is working by opening the Shell
Step 2: Test that Spark Works
a) cd into the Spark directory Run "./bin/spark-shell". This will open up the Spark interactive shell program
b) If everything worked it should display this prompt: "scala>"
Run a simple calculation:
sc.parallelize( 1 to 50 ).sum(+) which should output 1250.
c) Congratulations Spark is working! Exit the Spark shell with the command "exit"
The Spark Cassandra Connector
To connect Spark to a Cassandra cluster, the Cassandra Connector will need to be added to the Spark project. DataStax provides their own Cassandra Connector on GitHub and we will use that.
Clone the Spark Cassandra Connector repository:
https://github.com/datastax/spark-cassandra-connector
cd into "spark-cassandra-connector" Build the Spark Cassandra Connector by executing the command
./sbt/sbt Dscala-2.11=true assembly
This should output compiled jar files to the directory named "target". There will be two jar files, one for Scala and one for Java. The jar we are interested in is: "spark-cassandra-connector-assembly-1.1.1-SNAPSHOT.jar" the one for Scala. Move the jar file into an easy to find directory: I put mine into ~/apps/spark-1.2/jars
To load the connector into the Spark Shell:
start the shell with this command:
../bin/spark-shell –jars ~/apps/spark-1.2/jars/spark-cassandra-connector-assembly-1.1.1-SNAPSHOT.jar
Connect the Spark Context to the Cassandra cluster and stop the default context:
sc.stop
Import the necessary jar files:
import com.datastax.spark.connector._, org.apache.spark.SparkContext, org.apache.spark.SparkContext._, org.apache.spark.SparkConf
Make a new SparkConf with the Cassandra connection details:
val conf = new SparkConf(true).set("spark.cassandra.connection.host", "localhost")
Create a new Spark Context:
val sc = new SparkContext(conf)
You now have a new SparkContext which is connected to your Cassandra cluster.
Spark-Cassandra-Connector Complete Code in JAVA with Window-7,8,10 Usefull.
import com.datastax.driver.core.Session;
import com.datastax.spark.connector.cql.CassandraConnector;
import com.google.common.base.Optional;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFlatMapFunction;
import scala.Tuple2;
import spark_conn.Spark_connection;
import java.io.Serializable;
import java.math.BigDecimal;
import java.text.MessageFormat;
import java.util.*;
import static com.datastax.spark.connector.CassandraJavaUtil.*;
public class App implements Serializable
{
private transient SparkConf conf;
private App(SparkConf conf) {
this.conf = conf;
}
private void run() {
JavaSparkContext sc = new JavaSparkContext(conf);
generateData(sc);
compute(sc);
showResults(sc);
sc.stop();
}
private void generateData(JavaSparkContext sc) {
CassandraConnector connector = CassandraConnector.apply(sc.getConf());
// Prepare the schema
try{
Session session=connector.openSession();
session.execute("DROP KEYSPACE IF EXISTS java_api");
session.execute("CREATE KEYSPACE java_api WITH
replication = {'class': 'SimpleStrategy', 'replication_factor': 1}");
session.execute("CREATE TABLE java_api.products
(id INT PRIMARY KEY, name TEXT, parents LIST<INT>)");
session.execute("CREATE TABLE java_api.sales
(id UUID PRIMARY KEY, product INT, price DECIMAL)");
session.execute("CREATE TABLE java_api.summaries
(product INT PRIMARY KEY, summary DECIMAL)");
}catch(Exception e){System.out.println(e);}
// Prepare the products hierarchy
List<Product> products = Arrays.asList(
new Product(0, "All products", Collections.<Integer>emptyList()),
new Product(1, "Product A", Arrays.asList(0)),
new Product(4, "Product A1", Arrays.asList(0, 1)),
new Product(5, "Product A2", Arrays.asList(0, 1)),
new Product(2, "Product B", Arrays.asList(0)),
new Product(6, "Product B1", Arrays.asList(0, 2)),
new Product(7, "Product B2", Arrays.asList(0, 2)),
new Product(3, "Product C", Arrays.asList(0)),
new Product(8, "Product C1", Arrays.asList(0, 3)),
new Product(9, "Product C2", Arrays.asList(0, 3))
);
JavaRDD<Product> productsRDD = sc.parallelize(products);
javaFunctions(productsRDD, Product.class).
saveToCassandra("java_api", "products");
JavaRDD<Sale> salesRDD = productsRDD.filter
(new Function<Product, Boolean>() {
@Override
public Boolean call(Product product) throws Exception {
return product.getParents().size() == 2;
}
}).flatMap(new FlatMapFunction<Product, Sale>() {
@Override
public Iterable<Sale> call(Product product) throws Exception {
Random random = new Random();
List<Sale> sales = new ArrayList<>(1000);
for (int i = 0; i < 1000; i++) {
sales.add(new Sale(UUID.randomUUID(),
product.getId(), BigDecimal.valueOf(random.nextDouble())));
}
return sales;
}
});
javaFunctions(salesRDD, Sale.class).saveToCassandra
("java_api", "sales");
}
private void compute(JavaSparkContext sc) {
JavaPairRDD<Integer, Product> productsRDD = javaFunctions(sc)
.cassandraTable("java_api", "products", Product.class)
.keyBy(new Function<Product, Integer>() {
@Override
public Integer call(Product product) throws Exception {
return product.getId();
}
});
JavaPairRDD<Integer, Sale> salesRDD = javaFunctions(sc)
.cassandraTable("java_api", "sales", Sale.class)
.keyBy(new Function<Sale, Integer>() {
@Override
public Integer call(Sale sale) throws Exception {
return sale.getProduct();
}
});
JavaPairRDD<Integer, Tuple2<Sale, Product>> joinedRDD = salesRDD.join(productsRDD);
JavaPairRDD<Integer, BigDecimal> allSalesRDD = joinedRDD.flatMapToPair(new PairFlatMapFunction<Tuple2<Integer, Tuple2<Sale, Product>>, Integer, BigDecimal>() {
@Override
public Iterable<Tuple2<Integer, BigDecimal>> call(Tuple2<Integer, Tuple2<Sale, Product>> input) throws Exception {
Tuple2<Sale, Product> saleWithProduct = input._2();
List<Tuple2<Integer, BigDecimal>> allSales = new ArrayList<>(saleWithProduct._2().getParents().size() + 1);
allSales.add(new Tuple2<>(saleWithProduct._1().getProduct(), saleWithProduct._1().getPrice()));
for (Integer parentProduct : saleWithProduct._2().getParents()) {
allSales.add(new Tuple2<>(parentProduct, saleWithProduct._1().getPrice()));
}
return allSales;
}
});
JavaRDD<Summary> summariesRDD = allSalesRDD.reduceByKey(new Function2<BigDecimal, BigDecimal, BigDecimal>() {
@Override
public BigDecimal call(BigDecimal v1, BigDecimal v2) throws Exception {
return v1.add(v2);
}
}).map(new Function<Tuple2<Integer, BigDecimal>, Summary>() {
@Override
public Summary call(Tuple2<Integer, BigDecimal> input) throws Exception {
return new Summary(input._1(), input._2());
}
});
javaFunctions(summariesRDD, Summary.class).saveToCassandra("java_api", "summaries");
}
private void showResults(JavaSparkContext sc) {
JavaPairRDD<Integer, Summary> summariesRdd = javaFunctions(sc)
.cassandraTable("java_api", "summaries", Summary.class)
.keyBy(new Function<Summary, Integer>() {
@Override
public Integer call(Summary summary) throws Exception {
return summary.getProduct();
}
});
JavaPairRDD<Integer, Product> productsRdd = javaFunctions(sc)
.cassandraTable("java_api", "products", Product.class)
.keyBy(new Function<Product, Integer>() {
@Override
public Integer call(Product product) throws Exception {
return product.getId();
}
});
List<Tuple2<Product, Optional<Summary>>> results = productsRdd.leftOuterJoin(summariesRdd).values().toArray();
for (Tuple2<Product, Optional<Summary>> result : results) {
System.out.println(result);
}
}
public static void main(String[] args) {
// if (args.length != 2) {
// System.err.println("Syntax: com.datastax.spark.demo.App <Spark Master URL> <Cassandra contact point>");
// System.exit(1);
// }
// SparkConf conf = new SparkConf(true)
// .set("spark.cassandra.connection.host", "127.0.1.1")
// .set("spark.cassandra.auth.username", "cassandra")
// .set("spark.cassandra.auth.password", "cassandra");
//SparkContext sc = new SparkContext("spark://127.0.1.1:9045", "test", conf);
//return ;
/* try{
SparkConf conf = new SparkConf(true);
conf.setAppName("Spark-Cassandra Integration");
conf.setMaster("yarn-cluster");
conf.set("spark.cassandra.connection.host", "192.168.1.200");
conf.set("spark.cassandra.connection.rpc.port", "9042");
conf.set("spark.cassandra.connection.timeout_ms", "40000");
conf.set("spark.cassandra.read.timeout_ms", "200000");
System.out.println("Hi.......Main Method1111...");
conf.set("spark.cassandra.auth.username","cassandra");
conf.set("spark.cassandra.auth.password","cassandra");
System.out.println("Connected Successful...!\n");
App app = new App(conf);
app.run();
}catch(Exception e){System.out.println(e);}*/
SparkConf conf = new SparkConf();
conf.setAppName("Java API demo");
// conf.setMaster(args[0]);
// conf.set("spark.cassandra.connection.host", args[1]);
conf.setMaster("spark://192.168.1.117:7077");
conf.set("spark.cassandra.connection.host", "192.168.1.200");
conf.set("spark.cassandra.connection.port", "9042");
conf.set("spark.ui.port","4040");
conf.set("spark.cassandra.auth.username","cassandra");
conf.set("spark.cassandra.auth.password","cassandra");
App app = new App(conf);
app.run();
}
public static class Product implements Serializable {
private Integer id;
private String name;
private List<Integer> parents;
public Product() { }
public Product(Integer id, String name, List<Integer> parents) {
this.id = id;
this.name = name;
this.parents = parents;
}
public Integer getId() { return id; }
public void setId(Integer id) { this.id = id; }
public String getName() { return name; }
public void setName(String name) { this.name = name; }
public List<Integer> getParents() { return parents; }
public void setParents(List<Integer> parents) { this.parents = parents; }
@Override
public String toString() {
return MessageFormat.format("Product'{'id={0}, name=''{1}'', parents={2}'}'", id, name, parents);
}
}
public static class Sale implements Serializable {
private UUID id;
private Integer product;
private BigDecimal price;
public Sale() { }
public Sale(UUID id, Integer product, BigDecimal price) {
this.id = id;
this.product = product;
this.price = price;
}
public UUID getId() { return id; }
public void setId(UUID id) { this.id = id; }
public Integer getProduct() { return product; }
public void setProduct(Integer product) { this.product = product; }
public BigDecimal getPrice() { return price; }
public void setPrice(BigDecimal price) { this.price = price; }
@Override
public String toString() {
return MessageFormat.format("Sale'{'id={0}, product={1}, price={2}'}'", id, product, price);
}
}
public static class Summary implements Serializable {
private Integer product;
private BigDecimal summary;
public Summary() { }
public Summary(Integer product, BigDecimal summary) {
this.product = product;
this.summary = summary;
}
public Integer getProduct() { return product; }
public void setProduct(Integer product) { this.product = product; }
public BigDecimal getSummary() { return summary; }
public void setSummary(BigDecimal summary) { this.summary = summary; }
@Override
public String toString() {
return MessageFormat.format("Summary'{'product={0}, summary={1}'}'", product, summary);
}
}
}
To access Cassandra from the spark-shell, I've built an assembly out of the cassandra-spark-driver with all dependencies (an "uberjar"). Providing it to the spark-shell using the --jars option like this:
spark-shell --jars spark-cassandra-assembly-1.0.0-SNAPSHOT-jar-with-dependencies.jar
I was facing the same issue described here and this method is both simple and convenient (instead of loading the long list of dependencies)
I've created a gist with the POM file that you can download. Using the pom to create the uberjar you should do:
mvn package
If you're using sbt, look into the sbt-assembly plugin.
I got it. Below is what I did:
$ git clone https://github.com/datastax/spark-cassandra-connector.git
$ cd spark-cassandra-connector
$ sbt/sbt assembly
$ $SPARK_HOME/bin/spark-shell --jars ~/spark-cassandra-connector/spark-cassandra-connector/target/scala-2.10/connector-assembly-1.2.0-SNAPSHOT.jar
In scala prompt,
scala> sc.stop
scala> import com.datastax.spark.connector._
scala> import org.apache.spark.SparkContext
scala> import org.apache.spark.SparkContext._
scala> import org.apache.spark.SparkConf
scala> val conf = new SparkConf(true).set("spark.cassandra.connection.host", "my cassandra host")
scala> val sc = new SparkContext("spark://spark host:7077", "test", conf)
For in-depth instructions check out the project website https://github.com/datastax/spark-cassandra-connector/blob/master/doc/13_spark_shell.md
Or feel free to use Spark-Packages to load the Library (Not all versions published) http://spark-packages.org/package/datastax/spark-cassandra-connector
> $SPARK_HOME/bin/spark-shell --packages com.datastax.spark:spark-cassandra-connector_2.10:1.4.0-M3-s_2.10
You'll want to start the class with the –driver-class-path set to include all your connector libs
I'll quote a blog post from the illustrious Amy Tobey
The easiest way I’ve found is to set the classpath with then restart the context in the REPL with the necessary classes imported to make sc.cassandraTable() visible. The newly loaded methods will not show up in tab completion. I don’t know why.
/opt/spark/bin/spark-shell --driver-class-path $(echo /path/to/connector/*.jar |sed 's/ /:/g')
It will print a bunch of log information then present scala> prompt.
scala> sc.stop
Now that the context is stopped, it’s time to import the connector.
scala> import com.datastax.spark.connector._
scala> val conf = new SparkConf()
scala> conf.set("cassandra.connection.host", "node1.pc.datastax.com")
scala> val sc = new SparkContext("local[2]", "Cassandra Connector Test", conf)
scala> val table = sc.cassandraTable("keyspace", "table")
scala> table.count
There is a slight issue with the DSE Classloader and previous package naming conventions that will prevent you from finding the new spark-connector libraries. You should be able to get around this by removing the line specifying the DSE Class loader in the scripts starting spark-shell.