This weekend I decided to try my hand at some Scala and Clojure. I\'m proficient with object oriented programming, and so Scala was easy to pick up as a language, but wante
Here is another (functional) Clojure solution:
(defn avarage [coll] (/ (reduce + coll) (count coll))) (defn ma [period coll] (map avarage (partition period 1 coll)))
The zeros at the beginning of the sequence must still be added if that is a requirement.
Here is Clojure pretending to be a more functional language. This is fully tail-recursive, btw, and includes leading zeroes.
(defn moving-average [period values]
(loop [[x & xs] values
window []
ys []]
(if (and (nil? x) (nil? xs))
;; base case
ys
;; inductive case
(if (< (count window) (dec period))
(recur xs (conj window x) (conj ys 0.0))
(recur xs
(conj (vec (rest window)) x)
(conj ys (/ (reduce + x window) period)))))))
(deftest test-moving-average
(is (= [0.0 0.0 0.0 4.75 5.0 6.0 7.25 8.0 8.25 6.5]
(moving-average 4 [2.0 4.0 7.0 6.0 3.0 8.0 12.0 9.0 4.0 1.0]))))
Usually I put the collection or list parameter last to make the function easier to curry. But in Clojure...
(partial moving-average 4)
... is so cumbersome, I usually end up doing this ...
#(moving-average 4 %)
... in which case, it doesn't really matter what order the parameters go.
Here are 2 more ways to do moving average in Scala 2.8.0(one strict and one lazy). Both assume there are at least p Doubles in vs.
// strict moving average
def sma(vs: List[Double], p: Int): List[Double] =
((vs.take(p).sum / p :: List.fill(p - 1)(0.0), vs) /: vs.drop(p)) {(a, v) =>
((a._1.head - a._2.head / p + v / p) :: a._1, a._2.tail)
}._1.reverse
// lazy moving average
def lma(vs: Stream[Double], p: Int): Stream[Double] = {
def _lma(a: => Double, vs1: Stream[Double], vs2: Stream[Double]): Stream[Double] = {
val _a = a // caches value of a
_a #:: _lma(_a - vs2.head / p + vs1.head / p, vs1.tail, vs2.tail)
}
Stream.fill(p - 1)(0.0) #::: _lma(vs.take(p).sum / p, vs.drop(p), vs)
}
scala> sma(List(2.0, 4.0, 7.0, 6.0, 3.0, 8.0, 12.0, 9.0, 4.0, 1.0), 4)
res29: List[Double] = List(0.0, 0.0, 0.0, 4.75, 5.0, 6.0, 7.25, 8.0, 8.25, 6.5)
scala> lma(Stream(2.0, 4.0, 7.0, 6.0, 3.0, 8.0, 12.0, 9.0, 4.0, 1.0), 4).take(10).force
res30: scala.collection.immutable.Stream[Double] = Stream(0.0, 0.0, 0.0, 4.75, 5.0, 6.0, 7.25, 8.0, 8.25, 6.5)
This example makes use of state, since to me it's a pragmatic solution in this case, and a closure to create the windowing averaging function:
(defn make-averager [#^Integer period]
(let [buff (atom (vec (repeat period nil)))
pos (atom 0)]
(fn [nextval]
(reset! buff (assoc @buff @pos nextval))
(reset! pos (mod (+ 1 @pos) period))
(if (some nil? @buff)
0
(/ (reduce + @buff)
(count @buff))))))
(map (make-averager 4)
[2.0, 4.0, 7.0, 6.0, 3.0, 8.0, 12.0, 9.0, 4.0, 1.0])
;; yields =>
(0 0 0 4.75 5.0 6.0 7.25 8.0 8.25 6.5)
It is still functional in the sense of making use of first class functions, though it is not side-effect free. The two languages you mentioned both run on top of the JVM and thus both allow for state-management when necessary.
Being late on the party, and new to functional programming too, I came to this solution with an inner function:
def slidingAvg (ixs: List [Double], len: Int) = {
val dxs = ixs.map (_ / len)
val start = (0.0 /: dxs.take (len)) (_ + _)
val head = List.make (len - 1, 0.0)
def addAndSub (sofar: Double, from: Int, to: Int) : List [Double] =
if (to >= dxs.length) Nil else {
val current = sofar - dxs (from) + dxs (to)
current :: addAndSub (current, from + 1, to + 1)
}
head ::: start :: addAndSub (start, 0, len)
}
val xs = List(2, 4, 7, 6, 3, 8, 12, 9, 4, 1)
slidingAvg (xs.map (1.0 * _), 4)
I adopted the idea, to divide the whole list by the period (len) in advance. Then I generate the sum to start with for the len-first-elements. And I generate the first, invalid elements (0.0, 0.0, ...) .
Then I recursively substract the first and add the last value. In the end I listify the whole thing.
A short Clojure version that has the advantage of being O(list length) regardless of your period:
(defn moving-average [list period]
(let [accums (let [acc (atom 0)] (map #(do (reset! acc (+ @acc %1 ))) (cons 0 list)))
zeros (repeat (dec period) 0)]
(concat zeros (map #(/ (- %1 %2) period) (drop period accums) accums))))
This exploits the fact that you can calculate the sum of a range of numbers by creating a cumulative sum of the sequence (e.g. [1 2 3 4 5] -> [0 1 3 6 10 15]) and then subtracting the two numbers with an offset equal to your period.