What is the difference between a thread and a fiber? I\'ve heard of fibers from ruby and I\'ve read heard they\'re available in other languages, could somebody explain to me
First I would recommend reading this explanation of the difference between processes and threads as background material.
Once you've read that it's pretty straight forward. Threads cans be implemented either in the kernel, in user space, or the two can be mixed. Fibers are basically threads implemented in user space.
In section 11.4 "Processes and Threads in Windows Vista" in Modern Operating Systems, Tanenbaum comments:
Although fibers are cooperatively scheduled, if there are multiple threads scheduling the fibers, a lot of careful synchronization is required to make sure fibers do not interfere with each other. To simplify the interaction between threads and fibers, it is often useful to create only as many threads as there are processors to run them, and affinitize the threads to each run only on a distinct set of available processors, or even just one processor. Each thread can then run a particular subset of the fibers, establishing a one to-many relationship between threads and fibers which simplifies synchronization. Even so there are still many difficulties with fibers. Most Win32 libraries are completely unaware of fibers, and applications that attempt to use fibers as if they were threads will encounter various failures. The kernel has no knowledge of fibers, and when a fiber enters the kernel, the thread it is executing on may block and the kernel will schedule an arbitrary thread on the processor, making it unavailable to run other fibers. For these reasons fibers are rarely used except when porting code from other systems that explicitly need the functionality provided by fibers.
Note that in addition to Threads and Fibers, Windows 7 introduces User-Mode Scheduling:
User-mode scheduling (UMS) is a light-weight mechanism that applications can use to schedule their own threads. An application can switch between UMS threads in user mode without involving the system scheduler and regain control of the processor if a UMS thread blocks in the kernel. UMS threads differ from fibers in that each UMS thread has its own thread context instead of sharing the thread context of a single thread. The ability to switch between threads in user mode makes UMS more efficient than thread pools for managing large numbers of short-duration work items that require few system calls.
More information about threads, fibers and UMS is available by watching Dave Probert: Inside Windows 7 - User Mode Scheduler (UMS).
Win32 fiber definition is in fact "Green Thread" definition established at Sun Microsystems. There is no need to waste the term fiber on the thread of some kind, i.e., a thread executing in user space under user code/thread-library control.
To clarify the argument look at the following comments:
We should assume that processes are made of threads and that threads should be made of fibers. With that logic in mind, using fibers for other sorts of threads is wrong.