numpy: how to get a max from an argmax result

后端 未结 3 1936
梦如初夏
梦如初夏 2020-12-07 03:12

I have a numpy array of arbitrary shape, e.g.:

a = array([[[ 1,  2],
            [ 3,  4],
            [ 8,  6]],

          [[ 7,  8],
           [ 9,  8],
         


        
相关标签:
3条回答
  • 2020-12-07 03:35

    For ndarray with arbitrary shape, you can flatten the argmax indices, then recover the correct shape, as so:

    idx = np.argmax(a, axis=-1)
    flat_idx = np.arange(a.size, step=a.shape[-1]) + idx.ravel()
    maximum = a.ravel()[flat_idx].reshape(*a.shape[:-1])
    
    0 讨论(0)
  • 2020-12-07 03:44

    You can use advanced indexing -

    In [17]: a
    Out[17]: 
    array([[[ 1,  2],
            [ 3,  4],
            [ 8,  6]],
    
           [[ 7,  8],
            [ 9,  8],
            [ 3, 12]]])
    
    In [18]: idx = a.argmax(axis=-1)
    
    In [19]: m,n = a.shape[:2]
    
    In [20]: a[np.arange(m)[:,None],np.arange(n),idx]
    Out[20]: 
    array([[ 2,  4,  8],
           [ 8,  9, 12]])
    

    For a generic ndarray case of any number of dimensions, as stated in the comments by @hpaulj, we could use np.ix_, like so -

    shp = np.array(a.shape)
    dim_idx = list(np.ix_(*[np.arange(i) for i in shp[:-1]]))
    dim_idx.append(idx)
    out = a[dim_idx]
    
    0 讨论(0)
  • 2020-12-07 03:52

    For arbitrary-shape arrays, the following should work :)

    a = np.arange(5 * 4 * 3).reshape((5,4,3))
    
    # for last axis
    argmax = a.argmax(axis=-1)
    a[tuple(np.indices(a.shape[:-1])) + (argmax,)]
    
    # for other axis (eg. axis=1)
    argmax = a.argmax(axis=1)
    idx = list(np.indices(a.shape[:1]+a.shape[2:]))
    idx[1:1] = [argmax]
    a[tuple(idx)]
    

    or

    a = np.arange(5 * 4 * 3).reshape((5,4,3))
    
    argmax = a.argmax(axis=0)
    np.choose(argmax, np.moveaxis(a, 0, 0))
    
    argmax = a.argmax(axis=1)
    np.choose(argmax, np.moveaxis(a, 1, 0))
    
    argmax = a.argmax(axis=2)
    np.choose(argmax, np.moveaxis(a, 2, 0))
    
    argmax = a.argmax(axis=-1)
    np.choose(argmax, np.moveaxis(a, -1, 0))
    
    0 讨论(0)
提交回复
热议问题