By conducting a basic test by running a simple C++ program on a normal desktop PC it seems plausible to suppose that sizes of pointers of any type (including pointers to fun
Target architecture "bits" says about registers size. Ex. Intel 8051 is 8-bit and operates on 8-bit registers, but (external)RAM and (external)ROM is accessed with 16-bit values.
Generally pointers will be size 2 on a 16-bit system, 3 on a 24-bit system, 4 on a 32-bit system, and 8 on a 64-bit system. It depends on the ABI and C implementation. AMD has long and legacy modes, and there are differences between AMD64 and Intel64 for Assembly language programmers but these are hidden for higher level languages.
Any problems with C/C++ code is likely to be due to poor programming practices and ignoring compiler warnings. See: "20 issues of porting C++ code to the 64-bit platform".
See also: "Can pointers be of different sizes?" and LRiO's answer:
... you are asking about C++ and its compliant implementations, not some specific physical machine. I'd have to quote the entire standard in order to prove it, but the simple fact is that it makes no guarantees on the result of sizeof(T*) for any T, and (as a corollary) no guarantees that sizeof(T1*) == sizeof(T2*) for any T1 and T2).
Note: Where is answered by JeremyP, C99 section 6.3.2.3, subsection 8:
A pointer to a function of one type may be converted to a pointer to a function of another type and back again; the result shall compare equal to the original pointer. If a converted pointer is used to call a function whose type is not compatible with the pointed-to type, the behavior is undefined.
In GCC you can avoid incorrect assumptions by using built-in functions: "Object Size Checking Built-in Functions":
Built-in Function: size_t __builtin_object_size (const void * ptr, int type)
is a built-in construct that returns a constant number of bytes from ptr to the end of the object ptr pointer points to (if known at compile time). To determine the sizes of dynamically allocated objects the function relies on the allocation functions called to obtain the storage to be declared with the alloc_size attribute (see Common Function Attributes). __builtin_object_size never evaluates its arguments for side effects. If there are any side effects in them, it returns (size_t) -1 for type 0 or 1 and (size_t) 0 for type 2 or 3. If there are multiple objects ptr can point to and all of them are known at compile time, the returned number is the maximum of remaining byte counts in those objects if type & 2 is 0 and minimum if nonzero. If it is not possible to determine which objects ptr points to at compile time, __builtin_object_size should return (size_t) -1 for type 0 or 1 and (size_t) 0 for type 2 or 3.
It's not correct, for example DOS pointers (16 bit) can be far (seg+ofs).
However, for the usual targets (Windows, OSX, Linux, Android, iOS) then it's correct. Because they all use the flat programming model which relies on paging.
In theory, you can also have systems which uses only the lower 32 bits when in x64. An example is a Windows executable linked without LARGEADDRESSAWARE. However this is to help the programmer avoid bugs when switching to x64. The pointers are truncated to 32 bits, but they are still 64 bit.
In x64 operating systems then this assumption is always true, because the flat mode is the only valid one. Long mode in CPU forces GDT entries to be 64 bit flat.
One also mentions a x32 ABI, I believe it is based on the same paging technology, forcing all pointers to be mapped to the lower 4gb. However this must be based to the same theory as in Windows. In x64 you can only have flat mode.
In 32 bit protected mode you could have pointers up to 48 bits. (Segmented mode). You can also have callgates. But, no operating system uses that mode.