Thank you all for your time in advance. I have a number of space delimited text files in the format;
29 04 13 18 15 00 7.667
29 04 13 18 30 00
I think it's going to be easier just to parse the dates them when reading the csv:
In [1]: df = pd.read_csv('0132_3.TXT', header=None, sep='\s+\s', parse_dates=[[0]])
In [2]: df
Out[2]:
0 1
0 2013-04-29 00:00:00 7.667
1 2013-04-29 00:00:00 7.000
2 2013-04-29 00:00:00 7.000
3 2013-04-29 00:00:00 7.333
4 2013-04-29 00:00:00 7.000
Since you're using a unusual date format you need to specify a date parser too:
In [11]: def date_parser(ss):
day, month, year, hour, min, sec = ss.split()
return pd.Timestamp('20%s-%s-%s %s:%s:%s' % (year, month, day, hour, min, sec))
In [12]: df = pd.read_csv('0132_3.TXT', header=None, sep='\s+\s', parse_dates=[[0]], date_parser=date_parser)
In [13]: df
Out[13]:
0 1
0 2013-04-29 18:15:00 7.667
1 2013-04-29 18:30:00 7.000
2 2013-04-29 18:45:00 7.000
3 2013-04-29 19:00:00 7.333
4 2013-04-29 19:15:00 7.000