Lets say that input from the user is a decimal number, ex. 5.2155 (having 4 decimal digits). It can be stored freely (int,double) etc.
Is there any
One way would be to read the number in as a string. Find the length of the substring after the decimal point and that's how many decimals the person entered. To convert this string into a float by using
atof(string.c_str());
On a different note; it's always a good idea when dealing with floating point operations to store them in a special object which has finite precision. For example, you could store the float points in a special type of object called "Decimal" where the whole number part and the decimal part of the number are both ints. This way you have a finite precision. The downside to this is that you have to write out methods for arithmetic operations (+, -, *, /, etc.), but you can easily overwrite operators in C++. I know this deviates from your original question, but it's always better to store your decimals in a finite form. In this way you can also answer your question of how many decimals the number has.
Two ways I know of, neither very clever unfortunately but this is more a limitation of the environment rather than me :-)
The first is to sprintf
the number to a big buffer with a "%.50f"
format string, strip off the trailing zeros then count the characters after the decimal point. This will be limited by the printf
family itself. Or you could use the string as input by the user (rather than sprintf
ing a floating point value), so as to avoid floating point problems altogether.
The second is to subtract the integer portion then iteratively multiply by 10 and again subtract the integer portion until you get zero. This is limited by the limits of computer representation of floating point numbers - at each stage you may get the problem of a number that cannot be represented exactly (so .2155 may actually be .215499999998). Something like the following (untested, except in my head, which is about on par with a COMX-35):
count = 0
num = abs(num)
num = num - int(num)
while num != 0:
num = num * 10
count = count + 1
num = num - int(num)
If you know the sort of numbers you'll get (e.g., they'll all be 0 to 4 digits after the decimal point), you can use standard floating point "tricks" to do it properly. For example, instead of:
while num != 0:
use
while abs(num) >= 0.0000001:
If the decimal part of your number is stored in a separate int
, you can just count the its decimal digits.
This is a improvement on andrei alexandrescu's improvement. His version was already faster than the naive way (dividing by 10 at every digit). The version below is constant time and faster at least on x86-64 and ARM for all sizes, but occupies twice as much binary code, so it is not as cache-friendly.
Benchmarks for this version vs alexandrescu's version on my PR on facebook folly.
Works on unsigned
, not signed
.
inline uint32_t digits10(uint64_t v) {
return 1
+ (std::uint32_t)(v>=10)
+ (std::uint32_t)(v>=100)
+ (std::uint32_t)(v>=1000)
+ (std::uint32_t)(v>=10000)
+ (std::uint32_t)(v>=100000)
+ (std::uint32_t)(v>=1000000)
+ (std::uint32_t)(v>=10000000)
+ (std::uint32_t)(v>=100000000)
+ (std::uint32_t)(v>=1000000000)
+ (std::uint32_t)(v>=10000000000ull)
+ (std::uint32_t)(v>=100000000000ull)
+ (std::uint32_t)(v>=1000000000000ull)
+ (std::uint32_t)(v>=10000000000000ull)
+ (std::uint32_t)(v>=100000000000000ull)
+ (std::uint32_t)(v>=1000000000000000ull)
+ (std::uint32_t)(v>=10000000000000000ull)
+ (std::uint32_t)(v>=100000000000000000ull)
+ (std::uint32_t)(v>=1000000000000000000ull)
+ (std::uint32_t)(v>=10000000000000000000ull);
}
Off the top of my head:
start with the fractional portion: .2155
repeatedly multiply by 10 and throw away the integer portion of the number until you get zero. The number of steps will be the number of decimals. e.g:
.2155 * 10 = 2.155
.155 * 10 = 1.55
.55 * 10 = 5.5
.5 * 10 = 5.0
4 steps = 4 decimal digits
char* fractpart(double f)
{
int intary={1,2,3,4,5,6,7,8,9,0};
char charary={'1','2','3','4','5','6','7','8','9','0'};
int count=0,x,y;
f=f-(int)f;
while(f<=1)
{
f=f*10;
for(y=0;y<10;y++)
{
if((int)f==intary[y])
{
chrstr[count]=charary[y];
break;
}
}
f=f-(int)f;
if(f<=0.01 || count==4)
break;
if(f<0)
f=-f;
count++;
}
return(chrstr);
}
Here is the complete program
#include <iostream.h>
#include <conio.h>
#include <string.h>
#include <math.h>
char charary[10]={'1','2','3','4','5','6','7','8','9','0'};
int intary[10]={1,2,3,4,5,6,7,8,9,0};
char* intpart(double);
char* fractpart(double);
int main()
{
clrscr();
int count = 0;
double d = 0;
char intstr[10], fractstr[10];
cout<<"Enter a number";
cin>>d;
strcpy(intstr,intpart(d));
strcpy(fractstr,fractpart(d));
cout<<intstr<<'.'<<fractstr;
getche();
return(0);
}
char* intpart(double f)
{
char retstr[10];
int x,y,z,count1=0;
x=(int)f;
while(x>=1)
{
z=x%10;
for(y=0;y<10;y++)
{
if(z==intary[y])
{
chrstr[count1]=charary[y];
break;
}
}
x=x/10;
count1++;
}
for(x=0,y=strlen(chrstr)-1;y>=0;y--,x++)
retstr[x]=chrstr[y];
retstr[x]='\0';
return(retstr);
}
char* fractpart(double f)
{
int count=0,x,y;
f=f-(int)f;
while(f<=1)
{
f=f*10;
for(y=0;y<10;y++)
{
if((int)f==intary[y])
{
chrstr[count]=charary[y];
break;
}
}
f=f-(int)f;
if(f<=0.01 || count==4)
break;
if(f<0)
f=-f;
count++;
}
return(chrstr);
}