This is an extension of the question posed here (quoted below)
I have a matrix (2d numpy ndarray, to be precise):
A = np.array([[4, 0,
Inspired by Roll rows of a matrix independently's solution, here's a vectorized one based on np.lib.stride_tricks.as_strided -
from skimage.util.shape import view_as_windows as viewW
def strided_indexing_roll(a, r):
# Concatenate with sliced to cover all rolls
p = np.full((a.shape[0],a.shape[1]-1),np.nan)
a_ext = np.concatenate((p,a,p),axis=1)
# Get sliding windows; use advanced-indexing to select appropriate ones
n = a.shape[1]
return viewW(a_ext,(1,n))[np.arange(len(r)), -r + (n-1),0]
Sample run -
In [76]: a
Out[76]:
array([[4, 0, 0],
[1, 2, 3],
[0, 0, 5]])
In [77]: r
Out[77]: array([ 2, 0, -1])
In [78]: strided_indexing_roll(a, r)
Out[78]:
array([[nan, nan, 4.],
[ 1., 2., 3.],
[ 0., 5., nan]])
I was able to hack this together with linear indexing...it gets the right result but performs rather slowly on large arrays.
A = np.array([[4, 0, 0],
[1, 2, 3],
[0, 0, 5]]).astype(float)
r = np.array([2, 0, -1])
rows, column_indices = np.ogrid[:A.shape[0], :A.shape[1]]
# Use always a negative shift, so that column_indices are valid.
# (could also use module operation)
r_old = r.copy()
r[r < 0] += A.shape[1]
column_indices = column_indices - r[:,np.newaxis]
result = A[rows, column_indices]
# replace with NaNs
row_length = result.shape[-1]
pad_inds = []
for ind,i in np.enumerate(r_old):
if i > 0:
inds2pad = [np.ravel_multi_index((ind,) + (j,),result.shape) for j in range(i)]
pad_inds.extend(inds2pad)
if i < 0:
inds2pad = [np.ravel_multi_index((ind,) + (j,),result.shape) for j in range(row_length+i,row_length)]
pad_inds.extend(inds2pad)
result.ravel()[pad_inds] = nan
Gives the expected result:
print result
[[ nan nan 4.]
[ 1. 2. 3.]
[ 0. 5. nan]]