Passing a list of arguments to a function with quasiquotation

后端 未结 2 2102
不知归路
不知归路 2020-12-06 14:36

I am trying to write a function in R that summarizes a data frame according to grouping variables. The grouping variables are given as a list and passed to group_by_at

相关标签:
2条回答
  • 2020-12-06 15:11

    You could make use of the ellipse .... Take the following example:

    sum_fun <- function(df, sum_var, ...) {
      sum_var <- substitute(sum_var)
      grps    <- substitute(list(...))[-1L]
      return(
        df %>% 
          group_by_at(.vars = as.character(grps)) %>% 
          summarize(sum(!! sum_var))
      )
    }
    
    d %>% sum_fun(baz, foo, bar)
    

    We take the additional arguments and create a list out of them. Afterwards we use non-standard evaluation (substitute) to get the variable names and prevent R from evaluating them. Since group_by_at expects an object of type character or numeric, we simply convert the vector of names into a vector of characters and the function gets evaluated as we would expect.

    > d %>% sum_fun(baz, foo, bar)
    # A tibble: 3 x 3
    # Groups:   foo [?]
        foo   bar `sum(baz)`
      <dbl> <dbl>      <dbl>
    1     1     2          3
    2     1     3          5
    3     4     5          7
    

    If you do not want to supply grouping variables as any number of additional arguments, then you can of course use a named argument:

    sum_fun <- function(df, sum_var, grps) {
      sum_var <- enquo(sum_var)
      grps    <- as.list(substitute(grps))[-1L]
      return(
        df %>% 
          group_by_at(.vars = as.character(grps)) %>% 
          summarize(sum(!! sum_var))
      )
    }
    
    sum_fun(mtcars, sum_var = hp, grps = c(cyl, gear))
    

    The reason why I use substitute is that it makes it easy to split the expression list(cyl, gear) in its components. There might be a way to use rlang but I have not digged into that package so far.

    0 讨论(0)
  • 2020-12-06 15:37

    I'd just use vars to do the quoting. Here is an example using mtcars dataset

    library(tidyverse)
    
    sum_fun <- function(.data, .summary_var, .group_vars) {
      summary_var <- enquo(.summary_var)
    
      .data %>%
        group_by_at(.group_vars) %>%
        summarise(mean = mean(!!summary_var))
    }
    
    sum_fun(mtcars, disp, .group_vars = vars(cyl, am))
    #> # A tibble: 6 x 3
    #> # Groups:   cyl [?]
    #>     cyl    am  mean
    #>   <dbl> <dbl> <dbl>
    #> 1     4     0 136. 
    #> 2     4     1  93.6
    #> 3     6     0 205. 
    #> 4     6     1 155  
    #> 5     8     0 358. 
    #> 6     8     1 326
    

    You can also replace .group_vars with ... (dot-dot-dot)

    sum_fun2 <- function(.data, .summary_var, ...) {
      summary_var <- enquo(.summary_var)
    
      .data %>%
        group_by_at(...) %>%  # Forward `...`
        summarise(mean = mean(!!summary_var))
    }
    
    sum_fun2(mtcars, disp, vars(cyl, am))
    #> # A tibble: 6 x 3
    #> # Groups:   cyl [?]
    #>     cyl    am  mean
    #>   <dbl> <dbl> <dbl>
    #> 1     4     0 136. 
    #> 2     4     1  93.6
    #> 3     6     0 205. 
    #> 4     6     1 155  
    #> 5     8     0 358. 
    #> 6     8     1 326
    

    If you prefer to supply inputs as a list of columns, you will need to use enquos for the ...

    sum_fun3 <- function(.data, .summary_var, ...) {
      summary_var <- enquo(.summary_var)
    
      group_var <- enquos(...)
      print(group_var)
    
      .data %>%
          group_by_at(group_var) %>% 
          summarise(mean = mean(!!summary_var))
    }
    
    sum_fun3(mtcars, disp, c(cyl, am))
    #> [[1]]
    #> <quosure>
    #>   expr: ^c(cyl, am)
    #>   env:  global
    #> 
    #> # A tibble: 6 x 3
    #> # Groups:   cyl [?]
    #>     cyl    am  mean
    #>   <dbl> <dbl> <dbl>
    #> 1     4     0 136. 
    #> 2     4     1  93.6
    #> 3     6     0 205. 
    #> 4     6     1 155  
    #> 5     8     0 358. 
    #> 6     8     1 326
    

    Edit: append an .addi_var to .../.group_var.

    sum_fun4 <- function(.data, .summary_var, .addi_var, .group_vars) {
      summary_var <- enquo(.summary_var)
    
      .data %>%
        group_by_at(c(.group_vars, .addi_var)) %>%
        summarise(mean = mean(!!summary_var))
    }
    
    sum_fun4(mtcars, disp, .addi_var = vars(gear), .group_vars = vars(cyl, am))
    #> # A tibble: 10 x 4
    #> # Groups:   cyl, am [?]
    #>      cyl    am  gear  mean
    #>    <dbl> <dbl> <dbl> <dbl>
    #>  1     4     0     3 120. 
    #>  2     4     0     4 144. 
    #>  3     4     1     4  88.9
    #>  4     4     1     5 108. 
    #>  5     6     0     3 242. 
    #>  6     6     0     4 168. 
    #>  7     6     1     4 160  
    #>  8     6     1     5 145  
    #>  9     8     0     3 358. 
    #> 10     8     1     5 326
    

    group_by_at() can also take input as a character vector of column names

    sum_fun5 <- function(.data, .summary_var, .addi_var, ...) {
    
      summary_var <- enquo(.summary_var)
      addi_var    <- enquo(.addi_var)
      group_var   <- enquos(...)
    
      ### convert quosures to strings for `group_by_at`
      all_group <- purrr::map_chr(c(addi_var, group_var), quo_name)
    
      .data %>%
        group_by_at(all_group) %>% 
        summarise(mean = mean(!!summary_var))
    }
    
    sum_fun5(mtcars, disp, gear, cyl, am)
    #> # A tibble: 10 x 4
    #> # Groups:   gear, cyl [?]
    #>     gear   cyl    am  mean
    #>    <dbl> <dbl> <dbl> <dbl>
    #>  1     3     4     0 120. 
    #>  2     3     6     0 242. 
    #>  3     3     8     0 358. 
    #>  4     4     4     0 144. 
    #>  5     4     4     1  88.9
    #>  6     4     6     0 168. 
    #>  7     4     6     1 160  
    #>  8     5     4     1 108. 
    #>  9     5     6     1 145  
    #> 10     5     8     1 326
    

    Created on 2018-10-09 by the reprex package (v0.2.1.9000)

    0 讨论(0)
提交回复
热议问题