In an answer to this SO question:
What is the equivalent of boost::variant in the C++ standard library?
it is mentioned that boost::variant and
It seems the main point of contention regarding the design of a variant class has been what should happen when an assignment to the variant, which should upon completion destory the old value, throws an exception:
variant<std::string, MyClassWithThrowingDefaultCtor> v = "ABC";
v = MyClassWithThrowingDefaultCtor();
The options seem to be:
boost::variant does apparently).and if I'm not mistaken, the latter is what's been accepted.
This is summarized from the ISO C++ blog post by Axel Naumann from Nov 2015.
Assignment/emplacement behavior:
boost::variant may allocate memory when performing assignment into a live variant. There are a number of rules that govern when this can happen, so whether a boost::variant will allocate memory depends on the Ts it is instantiated with.
std::variant will never dynamically allocate memory. However, as a concession to the complex rules of C++ objects, if an assignment/emplacement throws, then the variant may enter the "valueless_by_exception" state. In this state, the variant cannot be visited, nor will any of the other functions for accessing a specific member work.
You can only enter this state if assignment/emplacement throws.
Boost.Variant includes recursive_variant, which allows a variant to contain itself. They're essentially special wrappers around a pointer to a boost::variant, but they are tied into the visitation machinery.
std::variant has no such helper type.
std::variant offers more use of post-C++11 features. For example:
It forwards the noexcept status of the special member functions of its constituent types.
It has variadic template-based in-place constructors and emplacement functions.
Defect resolutions applied to C++17 may mean that it will also forward trivial copyability of its types. That is, if all of the types are trivially copyable, then so too will variant<Ts>.