Using data.table
library(data.table)
setDT(x)[, list(DATE=seq(START_DAY, END_DAY, by = 'day')), PER_COST]
# PER_COST DATE
# 1: 3451380 2013-02-26
# 2: 3451380 2013-02-27
# 3: 3451380 2013-02-28
# 4: 3451380 2013-03-01
# 5: 3451380 2013-03-02
#---
#116: 3575311 2013-06-21
#117: 3575311 2013-06-22
#118: 3575311 2013-06-23
#119: 3575311 2013-06-24
#120: 3575311 2013-06-25
If there are duplicate PER_COST
, then it may be better to use 1:nrow(x)
as the grouping variable
setDT(x)[, list(DATE=seq(START_DAY, END_DAY, by = 'day'),
PER_COST=rep(PER_COST, END_DAY-START_DAY+1)), 1:nrow(x)]
Update
Using dplyr
library(dplyr)
x %>%
rowwise() %>%
do(data.frame(DATE=seq(.$START_DAY, .$END_DAY, by='day'),
PER_COST= rep(.$PER_COST, .$END_DAY-.$START_DAY+1)))