I have a pandas DataFrame containing one column with multiple JSON data items as list of dicts. I want to normalize the JSON column and duplicate the non-JSON columns:
You can use concat with dict comprehension
with pop for extract column, remove second level and join to original:
df1 = (pd.concat({i: pd.DataFrame(x) for i, x in df_actions.pop('actions').items()})
.reset_index(level=1, drop=True)
.join(df_actions)
.reset_index(drop=True))
What is same as:
df1 = (pd.concat({i: json_normalize(x) for i, x in df_actions.pop('actions').items()})
.reset_index(level=1, drop=True)
.join(df_actions)
.reset_index(drop=True))
print (df1)
type value id
0 a 17 12
1 b 19 12
2 a 1 15
3 b 3 15
4 c 5 15