I have a data frame that is rather large and I need a good way (explained bellow) to extract indices for rows that have maximum values for a given field, within a certain se
You could speed it up a little faster by writing it in C; this question gave me the excuse to try Rcpp and inline; I'm sure the code could be written better as this is my first go.
Here's the code:
library(Rcpp)
library(inline)
src <- '
Rcpp::NumericVector xx(x);
Rcpp::IntegerVector gg(g);
Rcpp::NumericVector mx(m);
Rcpp::IntegerVector wh(w);
int nx = xx.size();
for(int i = 0; i < nx; i++) {
if( xx[i] > mx[gg[i]-1] ) {
mx[gg[i]-1] = xx[i];
wh[gg[i]-1] = i+1;
}
}
return wh;
'
fun <- cxxfunction(signature(x="numeric", g="integer",
m="numeric", w="integer"),
src, plugin="Rcpp")
maxg <- function(x, g) {
g <- factor(g)
n <- nlevels(g)
out <- fun(x=x, g=as.integer(g), m=rep(-Inf, n), w=integer(n))
names(out) <- levels(g)
out
}
Using Marek's data,
set.seed(6025051)
n <- 100000; k <- 20000
d <- data.frame(
value=rnorm(n),
label=sample(paste("A", seq_len(k), sep="_"), n, replace=TRUE)
)
it's about 4x faster than Marek's $
solution on my system.
system.time({
idx_1b <- sapply(split(1:nrow(d), d$label), function(x) {
x[which.max(d$value[x])]})
})
# user system elapsed
# 0.209 0.000 0.208
system.time({
idx_c <- maxg(d$value, d$label)
})
# user system elapsed
# 0.049 0.000 0.048
all.equal(idx_1b, idx_c)
# [1] TRUE
Interestingly, Marek's additional solution (which I don't yet understand, btw), is only marginally faster than the $
solution on my system.
system.time({
dd <- d[i <- order(d$label, d$value),]
ind <- c(dd$label[-1] != dd$label[-n], TRUE)
idx_2 <- setNames(seq_len(nrow(d))[i][ind],dd$label[ind])
})
# user system elapsed
# 0.198 0.001 0.199
Perhaps this may help:
tapply(seq(dim(d)[1]), d$label, function(rns){rns[which.max(d$value[rns])]} )
(note: I got this trick from the code of 'by')
First of all: you can get the speed up using:
idx <- sapply(split(seq_len(nrow(d)), d$label), function(x) {
x[which.max(d$value[x])]})
For a 100k data.frame
, on my machine it is 5x faster than d[x,"value"]
version.
For a large data.frame
and many labels you could use a similar method that I posted in earlier question:
dd <- d[i<-order(d$label, d$value),] # dd is sorted by label and value
ind <- c(dd$label[-1] != dd$label[-n], TRUE)
idx <- setNames(seq_len(nrow(d))[i][ind], dd$label[ind])
edit: A more efficient solution with the use of a trick from Martin Morgan answer:
v <- d$label[i<-order(d$value)] # we need only label, and with Martin
# trick sorting over label is not needed
ind <- !duplicated(v, fromLast=TRUE) # it finds last (max) occurrence of label
idx <- setNames(seq_len(nrow(d))[i][ind], v[ind])
NOTE: order of final vector is different.
It depends on your actual data structure but you should gain a nice speed-up:
# NOTE: different machine, so timing differ from previous
set.seed(6025051)
n <- 100000; k <- 20000
d <- data.frame(value=rnorm(n),
label=sample(paste("A",seq_len(k),sep="_"), n, replace=TRUE))
system.time(
idx_1 <- sapply(split(1:nrow(d), d$label), function(x) {
x[which.max(d[x,"value"])]})
)
# user system elapsed
# 1.30 0.02 1.31
system.time(
idx_1b <- sapply(split(seq_len(nrow(d)), d$label), function(x) {
x[which.max(d$value[x])]})
)
# user system elapsed
# 0.23 0.00 0.23
all.equal(idx_1, idx_1b)
# [1] TRUE
system.time({
dd <- d[i<-order(d$label, d$value),]
ind <- c(dd$label[-1] != dd$label[-n], TRUE)
idx_2 <- setNames(seq_len(nrow(d))[i][ind],dd$label[ind])
})
# user system elapsed
# 0.19 0.00 0.19
all.equal(idx_1, idx_2)
# [1] TRUE
system.time({
v <- d$label[i<-order(d$value)]
ind <- !duplicated(v, fromLast=TRUE)
idx_3 <- setNames(seq_len(nrow(d))[i][ind], v[ind])
})
# user system elapsed
# 0.05 0.00 0.04
all.equal(sort(idx_1), sort(idx_3))
# [1] TRUE