The example here What is the difference between 'log' and 'symlog'? nicely shows how a linear scale at the origin can be used with a log scale elsewhere. I
This solution makes an addition to cphlewis's answer so that there is a smooth transition, and the plot appears to have consistent tick markers. My change adds these three lines:
axLin.spines['bottom'].set_visible(False)
axLin.xaxis.set_ticks_position('top')
plt.setp(axLin.get_xticklabels(), visible=False)
In total, the code is
# linear and log axes for the same plot?
# starting with the histogram example from
# http://matplotlib.org/mpl_toolkits/axes_grid/users/overview.html
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
import numpy as np
# Numbers from -50 to 50, with 0.1 as step
xdomain = np.arange(-50,50, 0.1)
axMain = plt.subplot(111)
axMain.plot(xdomain, np.sin(xdomain))
axMain.set_yscale('log')
axMain.set_ylim((0.01, 0.5))
axMain.spines['top'].set_visible(False)
axMain.xaxis.set_ticks_position('bottom')
divider = make_axes_locatable(axMain)
axLin = divider.append_axes("top", size=2.0, pad=0, sharex=axMain)
axLin.plot(xdomain, np.sin(xdomain))
axLin.set_xscale('linear')
axLin.set_ylim((0.5, 1.5))
# Removes bottom axis line
axLin.spines['bottom'].set_visible(False)
axLin.xaxis.set_ticks_position('top')
plt.setp(axLin.get_xticklabels(), visible=False)
plt.title('Linear above, log below')
plt.show()
From the response of user1318806 to cphlewis:
Thank you. Actually I wanted a combination of log+linear on the x axis not y. But I assume your code should be easily adaptable.
Hello! If you wanted a combination of log+linear on the x-axis (patterned from the code of Duncan Watts and CubeJockey):
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
import numpy as np
# Numbers from -50 to 50, with 0.1 as step
xdomain = np.arange(-50,50, 0.1)
axMain = plt.subplot(111)
axMain.plot(np.sin(xdomain), xdomain)
axMain.set_xscale('linear')
axMain.set_xlim((0.5, 1.5))
axMain.spines['left'].set_visible(False)
axMain.yaxis.set_ticks_position('right')
axMain.yaxis.set_visible(False)
divider = make_axes_locatable(axMain)
axLin = divider.append_axes("left", size=2.0, pad=0, sharey=axMain)
axLin.set_xscale('log')
axLin.set_xlim((0.01, 0.5))
axLin.plot(np.sin(xdomain), xdomain)
axLin.spines['right'].set_visible(False)
axLin.yaxis.set_ticks_position('left')
plt.setp(axLin.get_xticklabels(), visible=True)
plt.title('Linear right, log left')
The code above yields:
(MISCELLANEOUS) Here's a very minor fix for the title and the absence of tick marks on the right side:
# Fix for: title + no tick marks on the right side of the plot
ax2 = axLin.twinx()
ax2.spines['left'].set_visible(False)
ax2.tick_params(axis='y',which='both',labelright='off')
Adding these lines will give you this:
pythonmatplotlib
I assume you want linear near the origin, log farther -- since `symlog' does it the other way around -- I couldn't come up with data that looked good like this, but you can put it together with the axes_grid:
# linear and log axes for the same plot?
# starting with the histogram example from
# http://matplotlib.org/mpl_toolkits/axes_grid/users/overview.html
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
import numpy as np
# Numbers from -50 to 50, with 0.1 as step
xdomain = np.arange(-50,50, 0.1)
axMain = plt.subplot(111)
axMain.plot(xdomain, np.sin(xdomain))
axMain.set_yscale('log')
axMain.set_ylim((0.01, 0.5))
divider = make_axes_locatable(axMain)
axLin = divider.append_axes("top", size=2.0, pad=0.02, sharex=axMain)
axLin.plot(xdomain, np.sin(xdomain))
axLin.set_xscale('linear')
axLin.set_ylim((0.5, 1.5))
plt.title('Linear above, log below')
plt.show()