I have 2 data frames df1
and df2
.
df1 <- data.frame(c1=c(\"a\",\"b\",\"c\",\"d\"),c2=c(1,2,3,4) )
df2 <- data.frame(c1=c(\"
You can create identifier columnas then subset:
e.g.
df1 <- data.frame(c1=c("a","b","c","d"),c2=c(1,2,3,4), indf1 = rep("Y",4) )
df2 <- data.frame(c1=c("c","d","e","f"),c2=c(3,4,5,6),indf2 = rep("Y",4) )
merge(df1,df2)
# c1 c2 indf1 indf2
#1 c 3 Y Y
#2 d 4 Y Y
bigdf <- merge(df1,df2,all=TRUE)
# c1 c2 indf1 indf2
#1 a 1 Y <NA>
#2 b 2 Y <NA>
#3 c 3 Y Y
#4 d 4 Y Y
#5 e 5 <NA> Y
#6 f 6 <NA> Y
Then subset how you wish:
bigdf[is.na(bigdf$indf1) ,]
# c1 c2 indf1 indf2
#5 e 5 <NA> Y
#6 f 6 <NA> Y
bigdf[is.na(bigdf$indf2) ,] #<- output you requested those not in df2
# c1 c2 indf1 indf2
#1 a 1 Y <NA>
#2 b 2 Y <NA>
I prefer sqldf
package:
require(sqldf)
sqldf("select * from df1 except select * from df2")
## c1 c2
## 1 a 1
## 2 b 2
One issue with https://stackoverflow.com/a/16144262/2055486 is it assumes neither data frame already has duplicated rows. The following function removes that limitation and also works with arbitrary user defined columns in x or y.
The implementation uses a similar idea to the implementation of duplicated.data.frame
in concatenating the columns together with a separator. duplicated.data.frame
uses "\r"
, which can cause collisions if the entries have embedded "\r"
characters. This uses the ASCII record separator "\30"
which will have a much lower chance of appearing in input data.
setdiff.data.frame <- function(x, y,
by = intersect(names(x), names(y)),
by.x = by, by.y = by) {
stopifnot(
is.data.frame(x),
is.data.frame(y),
length(by.x) == length(by.y))
!do.call(paste, c(x[by.x], sep = "\30")) %in% do.call(paste, c(y[by.y], sep = "\30"))
}
# Example usage
# remove all 4 or 6 cylinder 4 gear cars or 8 cylinder 3 gear rows
to_remove <- data.frame(cyl = c(4, 6, 8), gear = c(4, 4, 3))
mtcars[setdiff.data.frame(mtcars, to_remove), ]
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
#> Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
#> Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
#> Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
#> Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
#> Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
#> Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
#> Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
# with differing column names
to_remove2 <- data.frame(a = c(4, 6, 8), b = c(4, 4, 3))
mtcars[setdiff.data.frame(mtcars, to_remove2, by.x = c("cyl", "gear"), by.y = c("a", "b")), ]
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
#> Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
#> Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
#> Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
#> Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
#> Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
#> Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
#> Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
I think the simplest solution is with dplyr (tidyverse).
require(tidyverse)
anti_join(df1, df2)
If you're not planning on using any of the actual data in d2
, then you don't need merge
at all:
df1[!(df1$c1 %in% df2$c1), ]
I remember coming across this exact issue quite a few months back. Managed to sift through my Evernote one-liners.
Note: This is not my solution. Credit goes to whoever wrote it (whom I can't seem to find at the moment).
If you don't worry about rownames
then you can do:
df1[!duplicated(rbind(df2, df1))[-seq_len(nrow(df2))], ]
# c1 c2
# 1 a 1
# 2 b 2
Edit: A data.table
solution:
dt1 <- data.table(df1, key="c1")
dt2 <- data.table(df2)
dt1[!dt2]
or better one-liner (from v1.9.6+):
setDT(df1)[!df2, on="c1"]
This returns all rows in df1
where df2$c1
doesn't have a match with df1$c1
.