Say I have a 2D Numpy array of values on the range 0 to 1, which represents a grayscale image. How do I then convert this into a PIL Image object? All attempts so far have
If I understood you question, you want to get a grayscale image using PIL.
If this is the case, you do not need to multiply each pixels by 255.
The following worked for me
import numpy as np
from PIL import Image
# Creates a random image 100*100 pixels
mat = np.random.random((100,100))
# Creates PIL image
img = Image.fromarray(mat, 'L')
img.show()
I think the answer is wrong. The Image.fromarray( ____ , 'L') function seems to only work properly with an array of integers between 0 and 255. I use the np.uint8 function for this.
You can see this demonstrated if you try to make a gradient.
import numpy as np
from PIL import Image
# gradient between 0 and 1 for 256*256
array = np.linspace(0,1,256*256)
# reshape to 2d
mat = np.reshape(array,(256,256))
# Creates PIL image
img = Image.fromarray(np.uint8(mat * 255) , 'L')
img.show()
Makes a clean gradient
vs
import numpy as np
from PIL import Image
# gradient between 0 and 1 for 256*256
array = np.linspace(0,1,256*256)
# reshape to 2d
mat = np.reshape(array,(256,256))
# Creates PIL image
img = Image.fromarray( mat , 'L')
img.show()
Has the same kind of artifacting.