I\'m using WebClient
and custom BodyExtractor
class for my spring-boot application
WebClient webLCient = WebClient.create();
webClie
This is really not as complicated as other answers imply.
The only way to stream the data without buffering it all in memory is to use a pipe, as @jin-kwon suggested. However, it can be done very simply by using Spring's BodyExtractors and DataBufferUtils utility classes.
Example:
private InputStream readAsInputStream(String url) throws IOException {
PipedOutputStream osPipe = new PipedOutputStream();
PipedInputSteam isPipe = new PipedInputStream(osPipe);
ClientResponse response = webClient.get().uri(url)
.accept(MediaType.APPLICATION.XML)
.exchange()
.block();
final int statusCode = response.rawStatusCode();
// check HTTP status code, can throw exception if needed
// ....
Flux<DataBuffer> body = response.body(BodyExtractors.toDataBuffers())
.doOnError(t -> {
log.error("Error reading body.", t);
// close pipe to force InputStream to error,
// otherwise the returned InputStream will hang forever if an error occurs
try(isPipe) {
//no-op
} catch (IOException ioe) {
log.error("Error closing streams", ioe);
}
})
.doFinally(s -> {
try(osPipe) {
//no-op
} catch (IOException ioe) {
log.error("Error closing streams", ioe);
}
});
DataBufferUtils.write(body, osPipe)
.subscribe(DataBufferUtils.releaseConsumer());
return isPipe;
}
If you don't care about checking the response code or throwing an exception for a failure status code, you can skip the block()
call and intermediate ClientResponse
variable by using
flatMap(r -> r.body(BodyExtractors.toDataBuffers()))
instead.
You can use pipes.
static <R> Mono<R> pipeAndApply(
final Publisher<DataBuffer> source, final Executor executor,
final Function<? super ReadableByteChannel, ? extends R> function) {
return using(Pipe::open,
p -> {
executor.execute(() -> write(source, p.sink())
.doFinally(s -> {
try {
p.sink().close();
} catch (final IOException ioe) {
log.error("failed to close pipe.sink", ioe);
throw new RuntimeException(ioe);
}
})
.subscribe(releaseConsumer()));
return just(function.apply(p.source()));
},
p -> {
try {
p.source().close();
} catch (final IOException ioe) {
log.error("failed to close pipe.source", ioe);
throw new RuntimeException(ioe);
}
});
}
Or using CompletableFuture
,
static <R> Mono<R> pipeAndApply(
final Publisher<DataBuffer> source,
final Function<? super ReadableByteChannel, ? extends R> function) {
return using(Pipe::open,
p -> fromFuture(supplyAsync(() -> function.apply(p.source())))
.doFirst(() -> write(source, p.sink())
.doFinally(s -> {
try {
p.sink().close();
} catch (final IOException ioe) {
log.error("failed to close pipe.sink", ioe);
throw new RuntimeException(ioe);
}
})
.subscribe(releaseConsumer())),
p -> {
try {
p.source().close();
} catch (final IOException ioe) {
log.error("failed to close pipe.source", ioe);
throw new RuntimeException(ioe);
}
});
}
Here comes another variant from other answers. And it's still not memory-friendly.
static Mono<InputStream> asStream(WebClient.ResponseSpec response) {
return response.bodyToFlux(DataBuffer.class)
.map(b -> b.asInputStream(true))
.reduce(SequenceInputStream::new);
}
static void doSome(WebClient.ResponseSpec response) {
asStream(response)
.doOnNext(stream -> {
// do some with stream
})
.block();
}
I was able to make it work by using Flux#collect
and SequenceInputStream
@Override
public Mono<T> extract(ClientHttpResponse response, BodyExtractor.Context context) {
Flux<DataBuffer> body = response.getBody();
return body.collect(InputStreamCollector::new, (t, dataBuffer)-> t.collectInputStream(dataBuffer.asInputStream))
.map(inputStream -> {
try {
JaxBContext jc = JaxBContext.newInstance(SomeClass.class);
Unmarshaller unmarshaller = jc.createUnmarshaller();
return (T) unmarshaller.unmarshal(inputStream);
} catch(Exception e){
return null;
}
}).next();
}
InputStreamCollector.java
public class InputStreamCollector {
private InputStream is;
public void collectInputStream(InputStream is) {
if (this.is == null) this.is = is;
this.is = new SequenceInputStream(this.is, is);
}
public InputStream getInputStream() {
return this.is;
}
}
A slightly modified version of Bk Santiago's answer makes use of reduce()
instead of collect()
. Very similar, but doesn't require an extra class:
Java:
body.reduce(new InputStream() {
public int read() { return -1; }
}, (s: InputStream, d: DataBuffer) -> new SequenceInputStream(s, d.asInputStream())
).flatMap(inputStream -> /* do something with single InputStream */
Or Kotlin:
body.reduce(object : InputStream() {
override fun read() = -1
}) { s: InputStream, d -> SequenceInputStream(s, d.asInputStream()) }
.flatMap { inputStream -> /* do something with single InputStream */ }
Benefit of this approach over using collect()
is simply you don't need to have a different class to gather things up.
I created a new empty InputStream()
, but if that syntax is confusing, you can also replace it with ByteArrayInputStream("".toByteArray())
instead to create an empty ByteArrayInputStream
as your initial value instead.
There's a much cleaner way to do this using the underlying reactor-netty HttpClient
directly, instead of using WebClient
. The composition hierarchy is like this:
WebClient -uses-> HttpClient -uses-> TcpClient
Easier to show code than explain:
HttpClient.create()
.get()
.responseContent() // ByteBufFlux
.aggregate() // ByteBufMono
.asInputStream() // Mono<InputStream>
.block() // We got an InputStream, yay!
However, as I've pointed out already, using InputStream
is a blocking operation, that defeats the purpose of using a non-blocking HTTP client, not to mention aggregating the whole response. See this for a Java NIO vs. IO comparison.