Do you want to use signals or threads?
First, set up the signal handler or prepare a suitable thread function; see man 7 sigevent for details.
Next, create a suitable timer, using timer_create()
. See man 2 timer_create for details.
Depending on what you do when the timer fires, you may wish to set the timer to either one-shot, or to repeat at a short interval afterwards. You use timer_settime()
to both arm, and to disarm, the timer; see man 2 timer_settime for details.
In practical applications you usually need to multiplex the timer. Even though a process can create multiple timers, they are a limited resource. Especially timeout timers -- which are trivial, either setting a flag and/or sending a signal to a specific thread -- should use a single timer, which fires at the next timeout, sets the related timeout flag, and optionally send a signal (with an empty-body handler) to the desired thread to make sure it is interrupted. (For a single-thread process, the original signal delivery will interrupt blocking I/O calls.) Consider a server, responding to some request: the request itself might have a timeout on the order of a minute or so, while processing the request might need connection timeouts, I/O timeouts, and so on.
Now, the original question is interesting, because timers are powerful when used effectively. However, the example program is basically nonsense. Why don't you create say a program that sets one or more timers, each for example outputting something to standard output? Remember to use write()
et al from unistd.h
as they are async-signal safe, whereas printf()
et cetera from stdio.h
are not. (If your signal handlers use non-async-signal safe functions, the results are undefined. It usually works, but it's not guaranteed at all; it may just as well crash as work. Testing will not tell, as it is undefined.)
Edited to add: Here is a bare-bones example of multiplexed timeouts.
(To the extent possible under law, I dedicate all copyright and related and neighboring rights to the code snippets shown below to the public domain worldwide; see CC0 Public Domain Dedication. In other words, feel free to use the code below in any way you wish, just don't blame me for any problems with it.)
I used old-style GCC atomic built-ins, so it should be thread-safe. With a few additions, it should work for multithreaded code too. (You cannot use for example mutexes, because pthread_mutex_lock()
is not async-signal safe. Atomically manipulating the timeout states should work, although there might be some races left if you disable a timeout just when it fires.)
#define _POSIX_C_SOURCE 200809L
#include <unistd.h>
#include <signal.h>
#include <time.h>
#include <errno.h>
#define TIMEOUTS 16
#define TIMEOUT_SIGNAL (SIGRTMIN+0)
#define TIMEOUT_USED 1
#define TIMEOUT_ARMED 2
#define TIMEOUT_PASSED 4
static timer_t timeout_timer;
static volatile sig_atomic_t timeout_state[TIMEOUTS] = { 0 };
static struct timespec timeout_time[TIMEOUTS];
/* Return the number of seconds between before and after, (after - before).
* This must be async-signal safe, so it cannot use difftime().
*/
static inline double timespec_diff(const struct timespec after, const struct timespec before)
{
return (double)(after.tv_sec - before.tv_sec)
+ (double)(after.tv_nsec - before.tv_nsec) / 1000000000.0;
}
/* Add positive seconds to a timespec, nothing if seconds is negative.
* This must be async-signal safe.
*/
static inline void timespec_add(struct timespec *const to, const double seconds)
{
if (to && seconds > 0.0) {
long s = (long)seconds;
long ns = (long)(0.5 + 1000000000.0 * (seconds - (double)s));
/* Adjust for rounding errors. */
if (ns < 0L)
ns = 0L;
else
if (ns > 999999999L)
ns = 999999999L;
to->tv_sec += (time_t)s;
to->tv_nsec += ns;
if (to->tv_nsec >= 1000000000L) {
to->tv_nsec -= 1000000000L;
to->tv_sec++;
}
}
}
/* Set the timespec to the specified number of seconds, or zero if negative seconds.
*/
static inline void timespec_set(struct timespec *const to, const double seconds)
{
if (to) {
if (seconds > 0.0) {
const long s = (long)seconds;
long ns = (long)(0.5 + 1000000000.0 * (seconds - (double)s));
if (ns < 0L)
ns = 0L;
else
if (ns > 999999999L)
ns = 999999999L;
to->tv_sec = (time_t)s;
to->tv_nsec = ns;
} else {
to->tv_sec = (time_t)0;
to->tv_nsec = 0L;
}
}
}
/* Return nonzero if the timeout has occurred.
*/
static inline int timeout_passed(const int timeout)
{
if (timeout >= 0 && timeout < TIMEOUTS) {
const int state = __sync_or_and_fetch(&timeout_state[timeout], 0);
/* Refers to an unused timeout? */
if (!(state & TIMEOUT_USED))
return -1;
/* Not armed? */
if (!(state & TIMEOUT_ARMED))
return -1;
/* Return 1 if timeout passed, 0 otherwise. */
return (state & TIMEOUT_PASSED) ? 1 : 0;
} else {
/* Invalid timeout number. */
return -1;
}
}
/* Release the timeout.
* Returns 0 if the timeout had not fired yet, 1 if it had.
*/
static inline int timeout_unset(const int timeout)
{
if (timeout >= 0 && timeout < TIMEOUTS) {
/* Obtain the current timeout state to 'state',
* then clear all but the TIMEOUT_PASSED flag
* for the specified timeout.
* Thanks to Bylos for catching this bug. */
const int state = __sync_fetch_and_and(&timeout_state[timeout], TIMEOUT_PASSED);
/* Invalid timeout? */
if (!(state & TIMEOUT_USED))
return -1;
/* Not armed? */
if (!(state & TIMEOUT_ARMED))
return -1;
/* Return 1 if passed, 0 otherwise. */
return (state & TIMEOUT_PASSED) ? 1 : 0;
} else {
/* Invalid timeout number. */
return -1;
}
}
int timeout_set(const double seconds)
{
struct timespec now, then;
struct itimerspec when;
double next;
int timeout, i;
/* Timeout must be in the future. */
if (seconds <= 0.0)
return -1;
/* Get current time, */
if (clock_gettime(CLOCK_REALTIME, &now))
return -1;
/* and calculate when the timeout should fire. */
then = now;
timespec_add(&then, seconds);
/* Find an unused timeout. */
for (timeout = 0; timeout < TIMEOUTS; timeout++)
if (!(__sync_fetch_and_or(&timeout_state[timeout], TIMEOUT_USED) & TIMEOUT_USED))
break;
/* No unused timeouts? */
if (timeout >= TIMEOUTS)
return -1;
/* Clear all but TIMEOUT_USED from the state, */
__sync_and_and_fetch(&timeout_state[timeout], TIMEOUT_USED);
/* update the timeout details, */
timeout_time[timeout] = then;
/* and mark the timeout armable. */
__sync_or_and_fetch(&timeout_state[timeout], TIMEOUT_ARMED);
/* How long till the next timeout? */
next = seconds;
for (i = 0; i < TIMEOUTS; i++)
if ((__sync_fetch_and_or(&timeout_state[i], 0) & (TIMEOUT_USED | TIMEOUT_ARMED | TIMEOUT_PASSED)) == (TIMEOUT_USED | TIMEOUT_ARMED)) {
const double secs = timespec_diff(timeout_time[i], now);
if (secs >= 0.0 && secs < next)
next = secs;
}
/* Calculate duration when to fire the timeout next, */
timespec_set(&when.it_value, next);
when.it_interval.tv_sec = 0;
when.it_interval.tv_nsec = 0L;
/* and arm the timer. */
if (timer_settime(timeout_timer, 0, &when, NULL)) {
/* Failed. */
__sync_and_and_fetch(&timeout_state[timeout], 0);
return -1;
}
/* Return the timeout number. */
return timeout;
}
static void timeout_signal_handler(int signum __attribute__((unused)), siginfo_t *info, void *context __attribute__((unused)))
{
struct timespec now;
struct itimerspec when;
int saved_errno, i;
double next;
/* Not a timer signal? */
if (!info || info->si_code != SI_TIMER)
return;
/* Save errno; some of the functions used may modify errno. */
saved_errno = errno;
if (clock_gettime(CLOCK_REALTIME, &now)) {
errno = saved_errno;
return;
}
/* Assume no next timeout. */
next = -1.0;
/* Check all timeouts that are used and armed, but not passed yet. */
for (i = 0; i < TIMEOUTS; i++)
if ((__sync_or_and_fetch(&timeout_state[i], 0) & (TIMEOUT_USED | TIMEOUT_ARMED | TIMEOUT_PASSED)) == (TIMEOUT_USED | TIMEOUT_ARMED)) {
const double seconds = timespec_diff(timeout_time[i], now);
if (seconds <= 0.0) {
/* timeout [i] fires! */
__sync_or_and_fetch(&timeout_state[i], TIMEOUT_PASSED);
} else
if (next <= 0.0 || seconds < next) {
/* This is the soonest timeout in the future. */
next = seconds;
}
}
/* Note: timespec_set() will set the time to zero if next <= 0.0,
* which in turn will disarm the timer.
* The timer is one-shot; it_interval == 0.
*/
timespec_set(&when.it_value, next);
when.it_interval.tv_sec = 0;
when.it_interval.tv_nsec = 0L;
timer_settime(timeout_timer, 0, &when, NULL);
/* Restore errno. */
errno = saved_errno;
}
int timeout_init(void)
{
struct sigaction act;
struct sigevent evt;
struct itimerspec arm;
/* Install timeout_signal_handler. */
sigemptyset(&act.sa_mask);
act.sa_sigaction = timeout_signal_handler;
act.sa_flags = SA_SIGINFO;
if (sigaction(TIMEOUT_SIGNAL, &act, NULL))
return errno;
/* Create a timer that will signal to timeout_signal_handler. */
evt.sigev_notify = SIGEV_SIGNAL;
evt.sigev_signo = TIMEOUT_SIGNAL;
evt.sigev_value.sival_ptr = NULL;
if (timer_create(CLOCK_REALTIME, &evt, &timeout_timer))
return errno;
/* Disarm the timeout timer (for now). */
arm.it_value.tv_sec = 0;
arm.it_value.tv_nsec = 0L;
arm.it_interval.tv_sec = 0;
arm.it_interval.tv_nsec = 0L;
if (timer_settime(timeout_timer, 0, &arm, NULL))
return errno;
return 0;
}
int timeout_done(void)
{
struct sigaction act;
struct itimerspec arm;
int errors = 0;
/* Ignore the timeout signals. */
sigemptyset(&act.sa_mask);
act.sa_handler = SIG_IGN;
if (sigaction(TIMEOUT_SIGNAL, &act, NULL))
if (!errors) errors = errno;
/* Disarm any current timeouts. */
arm.it_value.tv_sec = 0;
arm.it_value.tv_nsec = 0L;
arm.it_interval.tv_sec = 0;
arm.it_interval.tv_nsec = 0;
if (timer_settime(timeout_timer, 0, &arm, NULL))
if (!errors) errors = errno;
/* Destroy the timer itself. */
if (timer_delete(timeout_timer))
if (!errors) errors = errno;
/* If any errors occurred, set errno. */
if (errors)
errno = errors;
/* Return 0 if success, errno otherwise. */
return errors;
}
Remember to include the rt
library when compiling, i.e. use gcc -W -Wall *source*.c -lrt -o *binary*
to compile.
The idea is that the main program first calls timeout_init()
to install all the necessary handlers et cetera, and may call timeout_done()
to deistall it before exiting (or in a child process after fork()
ing).
To set a timeout, you call timeout_set(seconds)
. The return value is a timeout descriptor. Currently there is just a flag you can check using timeout_passed()
, but the delivery of the timeout signal also interrupts any blocking I/O calls. Thus, you can expect the timeout to interrupt any blocking I/O call.
If you want to do anything more than set a flag at timeout, you cannot do it in the signal handler; remember, in a signal handler, you're limited to async-signal safe functions. The easiest way around that is to use a separate thread with an endless loop over sigwaitinfo()
, with the TIMEOUT_SIGNAL
signal blocked in all other threads. That way the dedicated thread is guaranteed to catch the signal, but at the same time, is not limited to async-signal safe functions. It can, for example, do much more work, or even send a signal to a specific thread using pthread_kill()
. (As long as that signal has a handler, even one with an empty body, its delivery will interrupt any blocking I/O call in that thread.)
Here is a simple example main()
for using the timeouts. It is silly, and relies on fgets()
not retrying (when interrupted by a signal), but it seems to work.
#include <string.h>
#include <stdio.h>
int main(void)
{
char buffer[1024], *line;
int t1, t2, warned1;
if (timeout_init()) {
fprintf(stderr, "timeout_init(): %s.\n", strerror(errno));
return 1;
}
printf("You have five seconds to type something.\n");
t1 = timeout_set(2.5); warned1 = 0;
t2 = timeout_set(5.0);
line = NULL;
while (1) {
if (timeout_passed(t1)) {
/* Print only the first time we notice. */
if (!warned1++)
printf("\nTwo and a half seconds left, buddy.\n");
}
if (timeout_passed(t2)) {
printf("\nAw, just forget it, then.\n");
break;
}
line = fgets(buffer, sizeof buffer, stdin);
if (line) {
printf("\nOk, you typed: %s\n", line);
break;
}
}
/* The two timeouts are no longer needed. */
timeout_unset(t1);
timeout_unset(t2);
/* Note: 'line' is non-NULL if the user did type a line. */
if (timeout_done()) {
fprintf(stderr, "timeout_done(): %s.\n", strerror(errno));
return 1;
}
return 0;
}