I am unable to save the image without the white borders and at the initial resolution (1037x627
)
import numpy as np
import matplotlib.pyplot as
There are two factors at play here:
Axes
doesn't take up the entire Figure
by defaultmatplotlib
, the Figure
's size is fixed, and the contents are stretched/squeezed/interpolated to fit the figure. You want the Figure
's size to be defined by its contents.To do what you want to do, there are three steps:
Let's use a random Hubble image from Nasa http://www.nasa.gov/sites/default/files/thumbnails/image/hubble_friday_12102015.jpg. It's a 1280x1216 pixel image.
Here's a heavily commented example to walk you through it:
import matplotlib.pyplot as plt
# On-screen, things will be displayed at 80dpi regardless of what we set here
# This is effectively the dpi for the saved figure. We need to specify it,
# otherwise `savefig` will pick a default dpi based on your local configuration
dpi = 80
im_data = plt.imread('hubble_friday_12102015.jpg')
height, width, nbands = im_data.shape
# What size does the figure need to be in inches to fit the image?
figsize = width / float(dpi), height / float(dpi)
# Create a figure of the right size with one axes that takes up the full figure
fig = plt.figure(figsize=figsize)
ax = fig.add_axes([0, 0, 1, 1])
# Hide spines, ticks, etc.
ax.axis('off')
# Display the image.
ax.imshow(im_data, interpolation='nearest')
# Add something...
ax.annotate('Look at This!', xy=(590, 650), xytext=(500, 500),
color='cyan', size=24, ha='right',
arrowprops=dict(arrowstyle='fancy', fc='cyan', ec='none'))
# Ensure we're displaying with square pixels and the right extent.
# This is optional if you haven't called `plot` or anything else that might
# change the limits/aspect. We don't need this step in this case.
ax.set(xlim=[-0.5, width - 0.5], ylim=[height - 0.5, -0.5], aspect=1)
fig.savefig('test.jpg', dpi=dpi, transparent=True)
plt.show()
The saved test.jpg
will be exactly 1280x1216 pixels. Of course, because we're using a lossy compressed format for both input and output, you won't get a perfect pixel match due to compression artifacts. If you used lossless input and output formats you should, though.