I did a thorough test of NotifyPropertyChanged to establish the impact of switching to the lambda expressions.
Here were my test results:

As you can see, using the lambda expression is roughly 5 times slower than the plain hard-coded string property change implementation, but users shouldn't fret, because even then it's capable of pumping out a hundred thousand property changes per second on my not so special work computer. As such, the benefit gained from no longer having to hard-code strings and being able to have one-line setters that take care of all your business far outweighs the performance cost to me.
Test 1 used the standard setter implementation, with a check to see that the property had actually changed:
public UInt64 TestValue1
{
get { return testValue1; }
set
{
if (value != testValue1)
{
testValue1 = value;
InvokePropertyChanged("TestValue1");
}
}
}
Test 2 was very similar, with the addition of a feature allowing the event to track the old value and the new value. Because this features was going to be implicit in my new base setter method, I wanted to see how much of the new overhead was due to that feature:
public UInt64 TestValue2
{
get { return testValue2; }
set
{
if (value != testValue2)
{
UInt64 temp = testValue2;
testValue2 = value;
InvokePropertyChanged("TestValue2", temp, testValue2);
}
}
}
Test 3 was where the rubber met the road, and I get to show off this new beautiful syntax for performing all observable property actions in one line:
public UInt64 TestValue3
{
get { return testValue3; }
set { SetNotifyingProperty(() => TestValue3, ref testValue3, value); }
}
Implementation
In my BindingObjectBase class, which all ViewModels end up inheriting, lies the implementation driving the new feature. I've stripped out the error handling so the meat of the function is clear:
protected void SetNotifyingProperty<T>(Expression<Func<T>> expression, ref T field, T value)
{
if (field == null || !field.Equals(value))
{
T oldValue = field;
field = value;
OnPropertyChanged(this, new PropertyChangedExtendedEventArgs<T>(GetPropertyName(expression), oldValue, value));
}
}
protected string GetPropertyName<T>(Expression<Func<T>> expression)
{
MemberExpression memberExpression = (MemberExpression)expression.Body;
return memberExpression.Member.Name;
}
All three methods meet at the OnPropertyChanged routine, which is still the standard:
public virtual void OnPropertyChanged(object sender, PropertyChangedEventArgs e)
{
PropertyChangedEventHandler handler = PropertyChanged;
if (handler != null)
handler(sender, e);
}
Bonus
If anyone's curious, the PropertyChangedExtendedEventArgs is something I just came up with to extend the standard PropertyChangedEventArgs, so an instance of the extension can always be in place of the base. It leverages knowledge of the old value when a property is changed using SetNotifyingProperty, and makes this information available to the handler.
public class PropertyChangedExtendedEventArgs<T> : PropertyChangedEventArgs
{
public virtual T OldValue { get; private set; }
public virtual T NewValue { get; private set; }
public PropertyChangedExtendedEventArgs(string propertyName, T oldValue, T newValue)
: base(propertyName)
{
OldValue = oldValue;
NewValue = newValue;
}
}