I\'d like to be able to compute descriptive statistics on data in a Pandas DataFrame, but I only care about duplicated entries. For example, let\'s say I have the DataFrame
Here's one possible solution to return all duplicated values in the two columns (i.e. rows 0, 1, 3, 4, 6, 7):
>>> key1_dups = frame.key1[frame.key1.duplicated()].values
>>> key2_dups = frame.key2[frame.key2.duplicated()].values
>>> frame[frame.key1.isin(key1_dups) & frame.key2.isin(key2_dups)]
key1 key2 data
0 1 2 5
1 2 2 6
3 1 2 6
4 2 2 1
6 2 2 2
7 2 2 8
(Edit: actually, the df.duplicated(take_last=True) | df.duplicated() method in @Yoel's answer is neater.)
To query the results of your groupby operation, you can use loc. For example:
>>> dups = frame[frame.key1.isin(key1_dups) & frame.key2.isin(key2_dups)]
>>> grouped = dups.groupby(['key1','key2']).min()
>>> grouped
data
key1 key2
1 2 5
2 2 1
>>> grouped.loc[1, 2]
data 5
Name: (1, 2), dtype: int64
Alternatively, turn grouped back into a "normal-looking" DataFrame by resetting both indexes:
>>> grouped.reset_index(level=0).reset_index(level=0)
key2 key1 data
0 2 1 5
1 2 2 1
EDIT for Pandas 0.17 or later:
As the take_last argument of the duplicated() method was deprecated in favour of the new keep argument since Pandas 0.17, please refer to this answer for the correct approach:
duplicated() method with keep=False, i.e. frame.duplicated(['key1', 'key2'], keep=False).Therefore, in order to extract the required data for this specific question, the following suffices:
In [81]: frame[frame.duplicated(['key1', 'key2'], keep=False)].groupby(('key1', 'key2')).min()
Out[81]:
data
key1 key2
1 2 5
2 2 1
[2 rows x 1 columns]
Interestingly enough, this change in Pandas 0.17 may be partially attributed to this question, as referred to in this issue.
For versions preceding Pandas 0.17:
We can play with the take_last argument of the duplicated() method:
take_last:boolean, defaultFalseFor a set of distinct duplicate rows, flag all but the last row as duplicated. Default is for all but the first row to be flagged.
If we set take_last's value to True, we flag all but the last duplicate row. Combining this along with its default value of False, which flags all but the first duplicate row, allows us to flag all duplicated rows:
In [76]: frame.duplicated(['key1', 'key2'])
Out[76]:
0 False
1 False
2 False
3 True
4 True
5 False
6 True
7 True
dtype: bool
In [77]: frame.duplicated(['key1', 'key2'], take_last=True)
Out[77]:
0 True
1 True
2 False
3 False
4 True
5 False
6 True
7 False
dtype: bool
In [78]: frame.duplicated(['key1', 'key2'], take_last=True) | frame.duplicated(['key1', 'key2'])
Out[78]:
0 True
1 True
2 False
3 True
4 True
5 False
6 True
7 True
dtype: bool
In [79]: frame[frame.duplicated(['key1', 'key2'], take_last=True) | frame.duplicated(['key1', 'key2'])]
Out[79]:
key1 key2 data
0 1 2 5
1 2 2 6
3 1 2 6
4 2 2 1
6 2 2 2
7 2 2 8
[6 rows x 3 columns]
Now we just need to use the groupby and min methods, and I believe the output is in the required format:
In [81]: frame[frame.duplicated(['key1', 'key2'], take_last=True) | frame.duplicated(['key1', 'key2'])].groupby(('key1', 'key2')).min()
Out[81]:
data
key1 key2
1 2 5
2 2 1
[2 rows x 1 columns]
To get a list of all the duplicated entries with Pandas version 0.17, you can simply set 'keep = False' in the duplicated function.
frame[frame.duplicated(['key1','key2'],keep=False)]
key1 key2 data
0 1 2 5
1 2 2 6
3 1 2 6
4 2 2 1
6 2 2 2
7 2 2 8