Every Christmas we draw names for gift exchanges in my family. This usually involves mulitple redraws until no one has pulled their spouse. So this year I coded up my own
Just make a graph with edges connecting two people if they are allowed to share gifts and then use a perfect matching algorithm. (Look for "Paths, Trees, and Flowers" for the (clever) algorithm)
There is a concept in graph theory called a Hamiltonian Circuit that describes the "goal" you describe. One tip for anybody who finds this is to tell users which "seed" was used to generate the graph. This way if you have to re-generate the graph you can. The "seed" is also useful if you have to add or remove a person. In that case simply choose a new "seed" and generate a new graph, making sure to tell participants which "seed" is the current/latest one.
Python solution here.
Given a sequence of (person, tags)
, where tags is itself a (possibly empty) sequence of strings, my algorithm suggests a chain of persons where each person gives a present to the next in the chain (the last person obviously is paired with the first one).
The tags exist so that the persons can be grouped and every time the next person is chosen from the group most dis-joined to the last person chosen. The initial person is chosen by an empty set of tags, so it will be picked from the longest group.
So, given an input sequence of:
example_sequence= [
("person1", ("male", "company1")),
("person2", ("female", "company2")),
("person3", ("male", "company1")),
("husband1", ("male", "company2", "marriage1")),
("wife1", ("female", "company1", "marriage1")),
("husband2", ("male", "company3", "marriage2")),
("wife2", ("female", "company2", "marriage2")),
]
a suggestion is:
['person1 [male,company1]', 'person2 [female,company2]', 'person3 [male,company1]', 'wife2 [female,marriage2,company2]', 'husband1 [male,marriage1,company2]', 'husband2 [male,marriage2,company3]', 'wife1 [female,marriage1,company1]']
Of course, if all persons have no tags (e.g. an empty tuple) then there is only one group to choose from.
There isn't always an optimal solution (think an input sequence of 10 women and 2 men, their genre being the only tag given), but it does a good work as much as it can.
Py2/3 compatible.
import random, collections
class Statistics(object):
def __init__(self):
self.tags = collections.defaultdict(int)
def account(self, tags):
for tag in tags:
self.tags[tag] += 1
def tags_value(self, tags):
return sum(1./self.tags[tag] for tag in tags)
def most_disjoined(self, tags, groups):
return max(
groups.items(),
key=lambda kv: (
-self.tags_value(kv[0] & tags),
len(kv[1]),
self.tags_value(tags - kv[0]) - self.tags_value(kv[0] - tags),
)
)
def secret_santa(people_and_their_tags):
"""Secret santa algorithm.
The lottery function expects a sequence of:
(name, tags)
For example:
[
("person1", ("male", "company1")),
("person2", ("female", "company2")),
("person3", ("male", "company1")),
("husband1", ("male", "company2", "marriage1")),
("wife1", ("female", "company1", "marriage1")),
("husband2", ("male", "company3", "marriage2")),
("wife2", ("female", "company2", "marriage2")),
]
husband1 is married to wife1 as seen by the common marriage1 tag
person1, person3 and wife1 work at the same company.
…
The algorithm will try to match people with the least common characteristics
between them, to maximize entrop— ehm, mingling!
Have fun."""
# let's split the persons into groups
groups = collections.defaultdict(list)
stats = Statistics()
for person, tags in people_and_their_tags:
tags = frozenset(tag.lower() for tag in tags)
stats.account(tags)
person= "%s [%s]" % (person, ",".join(tags))
groups[tags].append(person)
# shuffle all lists
for group in groups.values():
random.shuffle(group)
output_chain = []
prev_tags = frozenset()
while 1:
next_tags, next_group = stats.most_disjoined(prev_tags, groups)
output_chain.append(next_group.pop())
if not next_group: # it just got empty
del groups[next_tags]
if not groups: break
prev_tags = next_tags
return output_chain
if __name__ == "__main__":
example_sequence = [
("person1", ("male", "company1")),
("person2", ("female", "company2")),
("person3", ("male", "company1")),
("husband1", ("male", "company2", "marriage1")),
("wife1", ("female", "company1", "marriage1")),
("husband2", ("male", "company3", "marriage2")),
("wife2", ("female", "company2", "marriage2")),
]
print("suggested chain (each person gives present to next person)")
import pprint
pprint.pprint(secret_santa(example_sequence))