I have an rdd of integers (i.e. RDD[Int]
) and what I would like to do is to compute the following ten percentiles: [0th, 10th, 20th, ..., 90th, 100th]
I discovered this gist
https://gist.github.com/felixcheung/92ae74bc349ea83a9e29
that contains the following function:
/**
* compute percentile from an unsorted Spark RDD
* @param data: input data set of Long integers
* @param tile: percentile to compute (eg. 85 percentile)
* @return value of input data at the specified percentile
*/
def computePercentile(data: RDD[Long], tile: Double): Double = {
// NIST method; data to be sorted in ascending order
val r = data.sortBy(x => x)
val c = r.count()
if (c == 1) r.first()
else {
val n = (tile / 100d) * (c + 1d)
val k = math.floor(n).toLong
val d = n - k
if (k <= 0) r.first()
else {
val index = r.zipWithIndex().map(_.swap)
val last = c
if (k >= c) {
index.lookup(last - 1).head
} else {
index.lookup(k - 1).head + d * (index.lookup(k).head - index.lookup(k - 1).head)
}
}
}
}
You can :
To compute the median and the 99th percentile: getPercentiles(rdd, new double[]{0.5, 0.99}, size, numPartitions);
In Java 8:
public static double[] getPercentiles(JavaRDD<Double> rdd, double[] percentiles, long rddSize, int numPartitions) {
double[] values = new double[percentiles.length];
JavaRDD<Double> sorted = rdd.sortBy((Double d) -> d, true, numPartitions);
JavaPairRDD<Long, Double> indexed = sorted.zipWithIndex().mapToPair((Tuple2<Double, Long> t) -> t.swap());
for (int i = 0; i < percentiles.length; i++) {
double percentile = percentiles[i];
long id = (long) (rddSize * percentile);
values[i] = indexed.lookup(id).get(0);
}
return values;
}
Note that this requires sorting the dataset, O(n.log(n)) and can be expensive on large datasets.
The other answer suggesting simply computing a histogram would not compute correctly the percentile: here is a counter example: a dataset composed of 100 numbers, 99 numbers being 0, and one number being 1. You end up with all the 99 0's in the first bin, and the 1 in the last bin, with 8 empty bins in the middle.
How about t-digest?
https://github.com/tdunning/t-digest
A new data structure for accurate on-line accumulation of rank-based statistics such as quantiles and trimmed means. The t-digest algorithm is also very parallel friendly making it useful in map-reduce and parallel streaming applications.
The t-digest construction algorithm uses a variant of 1-dimensional k-means clustering to product a data structure that is related to the Q-digest. This t-digest data structure can be used to estimate quantiles or compute other rank statistics. The advantage of the t-digest over the Q-digest is that the t-digest can handle floating point values while the Q-digest is limited to integers. With small changes, the t-digest can handle any values from any ordered set that has something akin to a mean. The accuracy of quantile estimates produced by t-digests can be orders of magnitude more accurate than those produced by Q-digests in spite of the fact that t-digests are more compact when stored on disk.
In summary, the particularly interesting characteristics of the t-digest are that it
- has smaller summaries than Q-digest
- works on doubles as well as integers.
- provides part per million accuracy for extreme quantiles and typically <1000 ppm accuracy for middle quantiles
- is fast
- is very simple
- has a reference implementation that has > 90% test coverage
- can be used with map-reduce very easily because digests can be merged
It should be fairly easy to use the reference Java implementation from Spark.
Based on the answer given here Median UDAF in Spark/Scala, I used an UDAF to compute percentiles over spark windows (spark 2.1) :
First an abstract generic UDAF used for other aggregations
import org.apache.spark.sql.Row
import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction}
import org.apache.spark.sql.types._
import scala.collection.mutable
import scala.collection.mutable.ArrayBuffer
abstract class GenericUDAF extends UserDefinedAggregateFunction {
def inputSchema: StructType =
StructType(StructField("value", DoubleType) :: Nil)
def bufferSchema: StructType = StructType(
StructField("window_list", ArrayType(DoubleType, false)) :: Nil
)
def deterministic: Boolean = true
def initialize(buffer: MutableAggregationBuffer): Unit = {
buffer(0) = new ArrayBuffer[Double]()
}
def update(buffer: MutableAggregationBuffer,input: org.apache.spark.sql.Row): Unit = {
var bufferVal = buffer.getAs[mutable.WrappedArray[Double]](0).toBuffer
bufferVal+=input.getAs[Double](0)
buffer(0) = bufferVal
}
def merge(buffer1: MutableAggregationBuffer, buffer2: org.apache.spark.sql.Row): Unit = {
buffer1(0) = buffer1.getAs[ArrayBuffer[Double]](0) ++ buffer2.getAs[ArrayBuffer[Double]](0)
}
def dataType: DataType
def evaluate(buffer: Row): Any
}
Then the Percentile UDAF customized for deciles :
import org.apache.spark.sql.Row
import org.apache.spark.sql.expressions.{MutableAggregationBuffer, UserDefinedAggregateFunction}
import org.apache.spark.sql.types._
import scala.collection.mutable
import scala.collection.mutable.ArrayBuffer
class DecilesUDAF extends GenericUDAF {
override def dataType: DataType = ArrayType(DoubleType, false)
override def evaluate(buffer: Row): Any = {
val sortedWindow = buffer.getAs[mutable.WrappedArray[Double]](0).sorted.toBuffer
val windowSize = sortedWindow.size
if (windowSize == 0) return null
if (windowSize == 1) return (0 to 10).map(_ => sortedWindow.head).toArray
(0 to 10).map(i => sortedWindow(Math.min(windowSize-1, i*windowSize/10))).toArray
}
}
The UDAF is then instanciated and called over a partitionned and ordered window :
val deciles = new DecilesUDAF()
df.withColumn("mt_deciles", deciles(col("mt")).over(myWindow))
You can then split the resulting array into multiple columns with getItem :
def splitToColumns(size: Int, splitCol:String)(df: DataFrame) = {
(0 to size).foldLeft(df) {
case (df_arg, i) => df_arg.withColumn("mt_decile_"+i, col(splitCol).getItem(i))
}
}
df.transform(splitToColumns(10, "mt_deciles" ))
The UDAF is slower than native spark functions but as long as each grouped bag or each window is relatively small and fits into a single executor, it should be fine. The main advantage is using spark parallelism. With little effort, this code could be extend to n-quantiles.
I tested the code using this function :
def testDecilesUDAF = {
val window = W.partitionBy("user")
val deciles = new DecilesUDAF()
val schema = StructType(StructField("mt", DoubleType) :: StructField("user", StringType) :: Nil)
val rows1 = (1 to 20).map(i => Row(i.toDouble, "a"))
val rows2 = (21 to 40).map(i => Row(i.toDouble, "b"))
val df = spark.createDataFrame(spark.sparkContext.makeRDD[Row](rows1++rows2), schema)
df.withColumn("deciles", deciles(col("mt")).over(window))
.transform(splitToColumns(10, "deciles" ))
.drop("deciles")
.show(100, truncate=false)
}
First 3 lines of output :
+----+----+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+
|mt |user|mt_decile_0|mt_decile_1|mt_decile_2|mt_decile_3|mt_decile_4|mt_decile_5|mt_decile_6|mt_decile_7|mt_decile_8|mt_decile_9|mt_decile_10|
+----+----+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+-----------+------------+
|21.0|b |21.0 |23.0 |25.0 |27.0 |29.0 |31.0 |33.0 |35.0 |37.0 |39.0 |40.0 |
|22.0|b |21.0 |23.0 |25.0 |27.0 |29.0 |31.0 |33.0 |35.0 |37.0 |39.0 |40.0 |
|23.0|b |21.0 |23.0 |25.0 |27.0 |29.0 |31.0 |33.0 |35.0 |37.0 |39.0 |40.0 |
Here is my Python implementation on Spark for calculating the percentile for a RDD containing values of interest.
def percentile_threshold(ardd, percentile):
assert percentile > 0 and percentile <= 100, "percentile should be larger then 0 and smaller or equal to 100"
return ardd.sortBy(lambda x: x).zipWithIndex().map(lambda x: (x[1], x[0])) \
.lookup(np.ceil(ardd.count() / 100 * percentile - 1))[0]
# Now test it out
import numpy as np
randlist = range(1,10001)
np.random.shuffle(randlist)
ardd = sc.parallelize(randlist)
print percentile_threshold(ardd,0.001)
print percentile_threshold(ardd,1)
print percentile_threshold(ardd,60.11)
print percentile_threshold(ardd,99)
print percentile_threshold(ardd,99.999)
print percentile_threshold(ardd,100)
# output:
# 1
# 100
# 6011
# 9900
# 10000
# 10000
Separately, I defined the following function to get the 10th to 100th percentile.
def get_percentiles(rdd, stepsize=10):
percentiles = []
rddcount100 = rdd.count() / 100
sortedrdd = ardd.sortBy(lambda x: x).zipWithIndex().map(lambda x: (x[1], x[0]))
for p in range(0, 101, stepsize):
if p == 0:
pass
# I am not aware of a formal definition of 0 percentile,
# you can put a place holder like this if you want
# percentiles.append(sortedrdd.lookup(0)[0] - 1)
elif p == 100:
percentiles.append(sortedrdd.lookup(np.ceil(rddcount100 * 100 - 1))[0])
else:
pv = sortedrdd.lookup(np.ceil(rddcount100 * p) - 1)[0]
percentiles.append(pv)
return percentiles
randlist = range(1,10001)
np.random.shuffle(randlist)
ardd = sc.parallelize(randlist)
get_percentiles(ardd, 10)
# [1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000]
If you don't mind converting your RDD to a DataFrame, and using a Hive UDAF, you can use percentile. Assuming you've loaded HiveContext hiveContext into scope:
hiveContext.sql("SELECT percentile(x, array(0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9)) FROM yourDataFrame")
I found out about this Hive UDAF in this answer.