It's pointless to use Hungarian to indicate types because the compiler already does it for you.
Where Hungarian is useful is to distinguish between logically different sorts of variables that have the same raw type. For example, if you are using ints to represent coordinates, you could prefix x coordinates with x, y coordinates with y and distances with d. So you would have code that looks like
dxHighlight = xStart - xEnd
yHighlight = yLocation + 3
yEnd = yStart + dyHeight
dyCode = dyField * 2
and so on. It's useful because you can spot errors at a glance: If you add a dy to a y, you always get a y. If you subtract two x's you always get a dx. If you multiply a dy by a scalar, you always get a dy. And so on. If you see a line like
yTop = dyText + xButton
you know at a glance that it is wrong because adding a dy and a x does not make sense. The compiler could not catch this for you because as far as it can tell, you are adding an int to an int which is fine.