Using NetworkX, and new to the library, for a social network analysis query. By Query, I mean select/create subgraphs by attributes of both edges nodes where the edges creat
It's pretty straightforward to write a one-liner to make a list or generator of nodes with a specific property (generators shown here)
import networkx as nx
G = nx.Graph()
G.add_node(1, label='one')
G.add_node(2, label='fish')
G.add_node(3, label='two')
G.add_node(4, label='fish')
# method 1
fish = (n for n in G if G.node[n]['label']=='fish')
# method 2
fish2 = (n for n,d in G.nodes(data=True) if d['label']=='fish')
print(list(fish))
print(list(fish2))
G.add_edge(1,2,color='red')
G.add_edge(2,3,color='blue')
red = ((u,v) for u,v,d in G.edges(data=True) if d['color']=='red')
print(list(red))
If your graph is large and fixed and you want to do fast lookups you could make a "reverse dictionary" of the attributes like this,
labels = {}
for n, d in G.nodes(data=True):
l = d['label']
labels[l] = labels.get(l, [])
labels[l].append(n)
print labels
In order to select edges based on attributes of edges AND nodes, you may want to do something like this, using your graph, G2:
def select(G2, query):
'''Call the query for each edge, return list of matches'''
result = []
for u,v,d in G2.edges(data=True):
if query(u,v,d):
result.append([(u,v)])
return result
# Example query functions
# Each assumes that it receives two nodes (u,v) and
# the data (d) for an edge
def dog_feeling(u, v, d):
return (d['statementid'] == "3"
and G2.node[u]['type'] == "Dog"
or G2.node[u]['type'] == "Dog")
def any_feeling(u,v,d):
return (d['statementid'] == "3"
and G2.node[u]['type'] == "Feeling"
or G2.node[u]['type'] == "Feeling")
def cat_feeling(u,v,d):
return (G2.node[u]['type'] == "Cat"
or G2.node[v]['type'] == "Cat")
# Using the queries
print select(G2, query = dog_feeling)
print select(G2, query = any_feeling)
print select(G2, query = cat_feeling)
This abstracts away the iteration process into the select()
function and you can write your queries as individual, testable functions.
Building on @Aric's answer, you can find red fish like this:
red_fish = set(n for u,v,d in G.edges_iter(data=True)
if d['color']=='red'
for n in (u, v)
if G.node[n]['label']=='fish')
print(red_fish)
# set([2])