The common solution to preventing deadlock in code is to make sure the sequence of locking occur in a common manner regardless of which thread is accessing the resources.
Consistent ordering of locking is pretty much the first and last word when it comes to deadlock avoidance.
There are related techniques, such as lockless programming (where no thread ever waits on a lock, and thus there is no possibility of a cycle), but that's really just a special case of the "avoid inconsistent locking order" rule -- i.e. they avoid inconsistent locking by avoiding all locking. Unfortunately, lockless programming has its own issues, so it's not a panacea either.
If you want to broaden the scope a bit, there are methods for detecting deadlocks when they do occur (if for some reason you can't design your program to avoid them), and ways for breaking deadlocks when they do occur (e.g. by always locking with a timeout, or by forcing one of the deadlocked threads to have their Lock() command fail, or even just by killing one of the deadlocked threads); but I think they are all pretty inferior to simply making sure deadlocks cannot happen in the first place.
(btw if you want an automated way to check whether your program has potential deadlocks in it, check out valgrind's helgrind tool. It will monitor your code's locking patterns and notify you of any inconsistencies -- very useful)
While not an alternative to the known-sequence solution you mention, Andrei Alexandrescu wrote about some techniques for compile time checks that acquisition of locks is done through the intended mechanisms. See http://www.informit.com/articles/article.aspx?p=25298
The technique you describe isn't just common: it's the one technique that has been proven to work all the time. There are a few other rules you should follow when coding threaded code in C++, though, among which the most important may be:
I could go on for a while, but in my experience, the easiest way to work with threads is using patterns that are well-known to everyone who might work with the code, such as the producer/consumer pattern: it's easy to explain and you only need one tool (a queue) to allow your threads to communicate with each other. After all, the only reason for two threads to be synchronized with each other, is to allow them to communicate.
More general advice:
#include <thread>
#include <cassert>
#include <chrono>
#include <iostream>
#include <mutex>
void
nothing_could_possibly_go_wrong()
{
int flag = 0;
std::condition_variable cond;
std::mutex mutex;
int done = 0;
typedef std::unique_lock<std::mutex> lock;
auto const f = [&]
{
if(flag == 0) ++flag;
lock l(mutex);
++done;
cond.notify_one();
};
std::thread threads[2] = {
std::thread(f),
std::thread(f)
};
threads[0].join();
threads[1].join();
lock l(mutex);
cond.wait(l, [done] { return done == 2; });
// surely this can't fail!
assert( flag == 1 );
}
int
main()
{
for(;;) nothing_could_possibly_go_wrong();
}
Another technique is transactional programming. This though is not very common as it usually involves specialized hardware (most of it currently only in research institutions).
Each resource keeps track of modifications from different threads. The first thread to commit changes to all resources (it is using) wins all other thread (using those resources) get rolled back to try again with the resources in the new committed state.
A simplistic starting point for reading on the subject is transactional memory.
You are asking about the design level, but I'll add some lower level, programming practices.