I have a list of tuples like
data = [
(\'r1\', \'c1\', avg11, stdev11),
(\'r1\', \'c2\', avg12, stdev12),
(\'r2\', \'c1\', avg21, stdev21),
(\'r2\', \'c2\',
I submit that it is better to leave your data stacked as it is:
df = pandas.DataFrame(data, columns=['R_Number', 'C_Number', 'Avg', 'Std'])
# Possibly also this if these can always be the indexes:
# df = df.set_index(['R_Number', 'C_Number'])
Then it's a bit more intuitive to say
df.set_index(['R_Number', 'C_Number']).Avg.unstack(level=1)
This way it is implicit that you're seeking to reshape the averages, or the standard deviations. Whereas, just using pivot
, it's purely based on column convention as to what semantic entity it is that you are reshaping.
You can pivot your DataFrame after creating:
>>> df = pd.DataFrame(data)
>>> df.pivot(index=0, columns=1, values=2)
# avg DataFrame
1 c1 c2
0
r1 avg11 avg12
r2 avg21 avg22
>>> df.pivot(index=0, columns=1, values=3)
# stdev DataFrame
1 c1 c2
0
r1 stdev11 stdev12
r2 stdev21 stdev22
This is what I expected to see when I came to this question:
#!/usr/bin/env python
import pandas as pd
df = pd.DataFrame([(1, 2, 3, 4),
(5, 6, 7, 8),
(9, 0, 1, 2),
(3, 4, 5, 6)],
columns=list('abcd'),
index=['India', 'France', 'England', 'Germany'])
print(df)
gives
a b c d
India 1 2 3 4
France 5 6 7 8
England 9 0 1 2
Germany 3 4 5 6