Writing an infinite loop is simple:
while(true){
//add whatever break condition here
}
But this will trash the CPU performance. This ex
Why don't you write a small application and use the system's task scheduler to run it every minute, hour...etc?
Another option would be to write a Windows Service which runs in the background. The service could use a simple Alarm class like the following on MSDN:
http://msdn.microsoft.com/en-us/library/wkzf914z%28v=VS.90%29.aspx#Y2400
You can use it to periodically trigger your method. Internally this Alarm class uses a timer:
http://msdn.microsoft.com/en-us/library/system.timers.timer.aspx
Just set the timer's interval correctly (e.g. 60000 milliseconds) and it will raise the Elapsed event periodically. Attach an event handler to the Elapsed event to perform your task. No need to implement an "infinite loop" just to keep the application alive. This is handled for you by the service.
Why would you condone the use of an infinite loop? For this example would setting the program up as a scheduled task, to be run every minute, not be more economical?
The Timer approach is probably your best bet, but since you mention Thread.Sleep there is an interesting Thread.SpinWait or SpinWait struct alternative for similar problems that can sometimes be better than short Thread.Sleep invocations.
Also see this question: What's the purpose of Thread.SpinWait method?
Lots of "advanced" answers here but IMO simply using a Thread.Sleep(lowvalue) should suffice for most.
Timers are also a solution, but the code behind a timer is also an infinity loop - I would assume - that fires your code on elapsed intervals, but they have the correct infinity-loop setup.
If you need a large sleep, you can cut it into smaller sleeps.
So something like this is a simple and easy 0% CPU solution for a non-UI app.
static void Main(string[] args)
{
bool wait = true;
int sleepLen = 1 * 60 * 1000; // 1 minute
while (wait)
{
//... your code
var sleepCount = sleepLen / 100;
for (int i = 0; i < sleepCount; i++)
{
Thread.Sleep(100);
}
}
}
Regarding how the OS detects if the app is unresponsive. I do not know of any other tests than on UI applications, where there are methods to check if the UI thread processes UI code. Thread sleeps on the UI will easily be discovered. The Windows "Application is unresponsive" uses a simple native method "SendMessageTimeout" to see detect if the app has an unresponse UI.
Any infinity loop on an UI app should always be run in a separate thread.
You can use Begin-/End-Invoke
to yield to other threads. E.g.
public static void ExecuteAsyncLoop(Func<bool> loopBody)
{
loopBody.BeginInvoke(ExecuteAsyncLoop, loopBody);
}
private static void ExecuteAsyncLoop(IAsyncResult result)
{
var func = ((Func<bool>)result.AsyncState);
try
{
if (!func.EndInvoke(result))
return;
}
catch
{
// Do something with exception.
return;
}
func.BeginInvoke(ExecuteAsyncLoop, func);
}
You would use it as such:
ExecuteAsyncLoop(() =>
{
// Do something.
return true; // Loop indefinitely.
});
This used 60% of one core on my machine (completely empty loop). Alternatively, you can use this (Source) code in the body of your loop:
private static readonly bool IsSingleCpuMachine = (Environment.ProcessorCount == 1);
[DllImport("kernel32", ExactSpelling = true)]
private static extern void SwitchToThread();
private static void StallThread()
{
// On a single-CPU system, spinning does no good
if (IsSingleCpuMachine) SwitchToThread();
// Multi-CPU system might be hyper-threaded, let other thread run
else Thread.SpinWait(1);
}
while (true)
{
// Do something.
StallThread();
}
That used 20% of one core on my machine.