I was reading a blog post by a game coder for Introversion and he is busily trying to squeeze every CPU tick he can out of the code. One trick he mentions off-hand is to
I'm focusing on performance, execution speed, not memory usage. The compiler, without any optimizing switch, will map the variable storage area using the same order of declarations in code. Imagine
unsigned char a;
unsigned char b;
long c;
Big mess-up? without align switches, low-memory ops. et al, we're going to have an unsigned char using a 64bits word on your DDR3 dimm, and another 64bits word for the other, and yet the unavoidable one for the long.
So, that's a fetch per each variable.
However, packing it, or re-ordering it, will cause one fetch and one AND masking to be able to use the unsigned chars.
So speed-wise, on a current 64bits word-memory machine, aligns, reorderings, etc, are no-nos. I do microcontroller stuff, and there the differences in packed/non-packed are reallllly noticeable (talking about <10MIPS processors, 8bit word-memories)
On the side, it's long known that the engineering effort required to tweak code for performance other than what a good algorithm instructs you to do, and what the compiler is able to optimize, often results in burning rubber with no real effects. That and a write-only piece of syntaxically dubius code.
The last step-forward in optimization I saw (in uPs, don't think it's doable for PC apps) is to compile your program as a single module, have the compiler optimize it (much more general view of speed/pointer resolution/memory packing, etc), and have the linker trash non-called library functions, methods, etc.
We have slightly different guidelines for members here (ARM architecture target, mostly THUMB 16-bit codegen for various reasons):
"group by alignment" is somewhat obvious, and outside the scope of this question; it avoids padding, uses less memory, etc.
The second bullet, though, derives from the small 5-bit "immediate" field size on the THUMB LDRB (Load Register Byte), LDRH (Load Register Halfword), and LDR (Load Register) instructions.
5 bits means offsets of 0-31 can be encoded. Effectively, assuming "this" is handy in a register (which it usually is):
If they're outside this range, multiple instructions have to be generated: either a sequence of ADDs with immediates to accumulate the appropriate address in a register, or worse yet, a load from the literal pool at the end of the function.
If we do hit the literal pool, it hurts: the literal pool goes through the d-cache, not the i-cache; this means at least a cacheline worth of loads from main memory for the first literal pool access, and then a host of potential eviction and invalidation issues between the d-cache and i-cache if the literal pool doesn't start on its own cache line (i.e. if the actual code doesn't end at the end of a cache line).
(If I had a few wishes for the compiler we're working with, a way to force literal pools to start on cacheline boundaries would be one of them.)
(Unrelatedly, one of the things we do to avoid literal pool usage is keep all of our "globals" in a single table. This means one literal pool lookup for the "GlobalTable", rather than multiple lookups for each global. If you're really clever you might be able to keep your GlobalTable in some sort of memory that can be accessed without loading a literal pool entry -- was it .sbss?)
It is one of the ways of optimizing the working set size. There is a good article by John Robbins on how you can speed up the application performance by optimizing the working set size. Of course it involves careful selection of most frequent use cases the end user is likely to perform with the application.
Well the first member doesn't need an offset added to the pointer to access it.
While locality of reference to improve the cache behavior of data accesses is often a relevant consideration, there are a couple other reasons for controlling layout when optimization is required - particularly in embedded systems, even though the CPUs used on many embedded systems do not even have a cache.
- Memory alignment of the fields in structures
Alignment considerations are pretty well understood by many programmers, so I won't go into too much detail here.
On most CPU architectures, fields in a structure must be accessed at a native alignment for efficiency. This means that if you mix various sized fields the compiler has to add padding between the fields to keep the alignment requirements correct. So to optimize the memory used by a structure it's important to keep this in mind and lay out the fields such that the largest fields are followed by smaller fields to keep the required padding to a minimum. If a structure is to be 'packed' to prevent padding, accessing unaligned fields comes at a high runtime cost as the compiler has to access unaligned fields using a series of accesses to smaller parts of the field along with shifts and masks to assemble the field value in a register.
- Offset of frequently used fields in a structure
Another consideration that can be important on many embedded systems is to have frequently accessed fields at the start of a structure.
Some architectures have a limited number of bits available in an instruction to encode an offset to a pointer access, so if you access a field whose offset exceeds that number of bits the compiler will have to use multiple instructions to form a pointer to the field. For example, the ARM's Thumb architecture has 5 bits to encode an offset, so it can access a word-sized field in a single instruction only if the field is within 124 bytes from the start. So if you have a large structure an optimization that an embedded engineer might want to keep in mind is to place frequently used fields at the beginning of a structure's layout.
In C#, the order of the member is determined by the compiler unless you put the attribute [LayoutKind.Sequential/Explicit] which forces the compiler to lay out the structure/class the way you tell it to.
As far as I can tell, the compiler seems to minimize packing while aligning the data types on their natural order (i.e. 4 bytes int start on 4 byte addresses).