I was reading about order of evaluation violations, and they give an example that puzzles me.
1) If a side effect on a scalar object is un-sequenced r
A practical reason to not make an exception from the rules just because the two values are the same:
// config.h
#define VALUEA 1
// defaults.h
#define VALUEB 1
// prog.cpp
f(i = VALUEA, i = VALUEB);
Consider the case this was allowed.
Now, some months later, the need arises to change
#define VALUEB 2
Seemingly harmless, isn't it? And yet suddenly prog.cpp wouldn't compile anymore. Yet, we feel that compilation should not depend on the value of a literal.
Bottom line: there is no exception to the rule because it would make successful compilation depend on the value (rather the type) of a constant.
@HeartWare pointed out that constant expressions of the form A DIV B
are not allowed in some languages, when B
is 0, and cause compilation to fail. Hence changing of a constant could cause compilation errors in some other place. Which is, IMHO, unfortunate. But it is certainly good to restrict such things to the unavoidable.
Since the operations are unsequenced, there is nothing to say that the instructions performing the assignment cannot be interleaved. It might be optimal to do so, depending on CPU architecture. The referenced page states this:
If A is not sequenced before B and B is not sequenced before A, then two possibilities exist:
evaluations of A and B are unsequenced: they may be performed in any order and may overlap (within a single thread of execution, the compiler may interleave the CPU instructions that comprise A and B)
evaluations of A and B are indeterminately-sequenced: they may be performed in any order but may not overlap: either A will be complete before B, or B will be complete before A. The order may be the opposite the next time the same expression is evaluated.
That by itself doesn't seem like it would cause a problem - assuming that the operation being performed is storing the value -1 into a memory location. But there is also nothing to say that the compiler cannot optimize that into a separate set of instructions that has the same effect, but which could fail if the operation was interleaved with another operation on the same memory location.
For example, imagine that it was more efficient to zero the memory, then decrement it, compared with loading the value -1 in. Then this:
f(i=-1, i=-1)
might become:
clear i
clear i
decr i
decr i
Now i is -2.
It is probably a bogus example, but it is possible.
This is just answering the "I'm not sure what "scalar object" could mean besides something like an int or a float".
I would interpret the "scalar object" as a abbreviation of "scalar type object", or just "scalar type variable". Then, pointer
, enum
(constant) are of scalar type.
This is a MSDN article of Scalar Types.
Behavior is commonly specified as undefined if there is some conceivable reason why a compiler which was trying to be "helpful" might do something which would cause totally unexpected behavior.
In the case where a variable is written multiple times with nothing to ensure that the writes happen at distinct times, some kinds of hardware might allow multiple "store" operations to be performed simultaneously to different addresses using a dual-port memory. However, some dual-port memories expressly forbid the scenario where two stores hit the same address simultaneously, regardless of whether or not the values written match. If a compiler for such a machine notices two unsequenced attempts to write the same variable, it might either refuse to compile or ensure that the two writes cannot get scheduled simultaneously. But if one or both of the accesses is via a pointer or reference, the compiler might not always be able to tell whether both writes might hit the same storage location. In that case, it might schedule the writes simultaneously, causing a hardware trap on the access attempt.
Of course, the fact that someone might implement a C compiler on such a platform does not suggest that such behavior shouldn't be defined on hardware platforms when using stores of types small enough to be processed atomically. Trying to store two different values in unsequenced fashion could cause weirdness if a compiler isn't aware of it; for example, given:
uint8_t v; // Global
void hey(uint8_t *p)
{
moo(v=5, (*p)=6);
zoo(v);
zoo(v);
}
if the compiler in-lines the call to "moo" and can tell it doesn't modify "v", it might store a 5 to v, then store a 6 to *p, then pass 5 to "zoo", and then pass the contents of v to "zoo". If "zoo" doesn't modify "v", there should be no way the two calls should be passed different values, but that could easily happen anyway. On the other hand, in cases where both stores would write the same value, such weirdness could not occur and there would on most platforms be no sensible reason for an implementation to do anything weird. Unfortunately, some compiler writers don't need any excuse for silly behaviors beyond "because the Standard allows it", so even those cases aren't safe.
The assignment operator could be overloaded, in which case the order could matter:
struct A {
bool first;
A () : first (false) {
}
const A & operator = (int i) {
first = !first;
return * this;
}
};
void f (A a1, A a2) {
// ...
}
// ...
A i;
f (i = -1, i = -1); // the argument evaluated first has ax.first == true