If I understand correctly, the typical mechanism for Dependency Injection is to inject either through a class\' constructor or through a public property (member) of the clas
Yes, DI violates encapsulation (also known as "information hiding").
But the real problem comes when developers use it as an excuse to violate the KISS (Keep It Short and Simple) and YAGNI (You Ain't Gonna Need It) principles.
Personally, I prefer simple and effective solutions. I mostly use the "new" operator to instantiate stateful dependencies whenever and wherever they are needed. It is simple, well encapsulated, easy to understand, and easy to test. So, why not?
As Jeff Sternal pointed out in a comment to the question, the answer is entirely dependent on how you define encapsulation.
There seem to be two main camps of what encapsulation means:
File
object may have methods to Save
, Print
, Display
, ModifyText
, etc.These two definitions are in direct contradiction to each other. If a File
object can print itself, it will depend heavily on the printer's behavior. On the other hand, if it merely knows about something that can print for it (an IFilePrinter
or some such interface), then the File
object doesn't have to know anything about printing, and so working with it will bring less dependencies into the object.
So, dependency injection will break encapsulation if you use the first definition. But, frankly I don't know if I like the first definition - it clearly doesn't scale (if it did, MS Word would be one big class).
On the other hand, dependency injection is nearly mandatory if you're using the second definition of encapsulation.
Having struggled with the issue a little further, I am now in the opinion that Dependency Injection does (at this time) violate encapsulation to some degree. Don't get me wrong though - I think that using dependency injection is well worth the tradeoff in most cases.
The case for why DI violates encapsulation becomes clear when the component you are working on is to be delivered to an "external" party (think of writing a library for a customer).
When my component requires sub-components to be injected via the constructor (or public properties) there's no guarantee for
"preventing users from setting the internal data of the component into an invalid or inconsistent state".
At the same time it cannot be said that
"users of the component (other pieces of software) only need to know what the component does, and cannot make themselves dependent on the details of how it does it".
Both quotes are from wikipedia.
To give a specific example: I need to deliver a client-side DLL that simplifies and hides communication to a WCF service (essentially a remote facade). Because it depends on 3 different WCF proxy classes, if I take the DI approach I am forced to expose them via the constructor. With that I expose the internals of my communication layer which I am trying to hide.
Generally I am all for DI. In this particular (extreme) example, it strikes me as dangerous.
Maybe this is a naive way of thinking about it, but what is the difference between a constructor that takes in an integer parameter and a constructor that takes in a service as a parameter? Does this mean that defining an integer outside the new object and feeding it into the object breaks encapsulation? If the service is only used within the new object, I don't see how that would break encapsulation.
Also, by using some sort of autowiring feature (Autofac for C#, for example), it makes the code extremely clean. By building extension methods for the Autofac builder, I was able to cut out a LOT of DI configuration code that I would have had to maintain over time as the list of dependencies grew.
DI violates Encapsulation for NON-Shared objects - period. Shared objects have a lifespan outside of the object being created, and thus must be AGGREGATED into the object being created. Objects that are private to the object being created should be COMPOSED into the created object - when the created object is destroyed, it takes the composed object with it. Let's take the human body as an example. What's composed and what's aggregated. If we were to use DI, the human body constructor would have 100's of objects. Many of the organs, for example, are (potentially) replaceable. But, they are still composed into the body. Blood cells are created in the body (and destroyed) everyday, without the need for external influences (other than protein). Thus, blood cells are created internally by the body - new BloodCell().
Advocators of DI argue that an object should NEVER use the new operator. That "purist" approach not only violates encapsulation but also the Liskov Substitution Principle for whoever is creating the object.
This is similar to the upvoted answer but I want to think out loud - perhaps others see things this way as well.
Classical OO uses constructors to define the public "initialization" contract for consumers of the class (hiding ALL implementation details; aka encapsulation). This contract can ensure that after instantiation you have a ready-to-use object (i.e. no additional initialization steps to be remembered (er, forgotten) by the user).
(constructor) DI undeniably breaks encapsulation by bleeding implemenation detail through this public constructor interface. As long as we still consider the public constructor responsible for defining the initialization contract for users, we have created a horrible violation of encapsulation.
Theoretical Example:
Class Foo has 4 methods and needs an integer for initialization, so its constructor looks like Foo(int size) and it's immediately clear to users of class Foo that they must provide a size at instantiation in order for Foo to work.
Say this particular implementation of Foo may also need a IWidget to do its job. Constructor injection of this dependency would have us create a constructor like Foo(int size, IWidget widget)
What irks me about this is now we have a constructor that's blending initialization data with dependencies - one input is of interest to the user of the class (size), the other is an internal dependency that only serves to confuse the user and is an implementation detail (widget).
The size parameter is NOT a dependency - it's simple a per-instance initialization value. IoC is dandy for external dependencies (like widget) but not for internal state initialization.
Even worse, what if the Widget is only necessary for 2 of the 4 methods on this class; I may be incurring instantiation overhead for Widget even though it may not be used!
How to compromise/reconcile this?
One approach is to switch exclusively to interfaces to define the operation contract; and abolish the use of constructors by users. To be consistent, all objects would have to be accessed through interfaces only, and instantiated only through some form of resolver (like an IOC/DI container). Only the container gets to instantiate things.
That takes care of the Widget dependency, but how do we initialize "size" without resorting to a separate initialization method on the Foo interface? Using this solution, we lost the ability to ensure that an instance of Foo is fully initialized by the time you get the instance. Bummer, because I really like the idea and simplicity of constructor injection.
How do I achieve guaranteed initialization in this DI world, when initialization is MORE than ONLY external dependencies?