What is the meaning of exclamation and question marks in Jupyter notebook?

前端 未结 1 1987
故里飘歌
故里飘歌 2020-12-04 02:24

I would like to know what\'s the meaning of the following expressions, especially the meaning of ! and ?, in the following examples, related to que

相关标签:
1条回答
  • 2020-12-04 03:01

    Both of these marks will work in a Jupyter notebook.

    The exclamation mark ! is used for executing commands from the uderlying operating system; here is an example using WIndows dir:

    !dir
    # result:
    Volume in drive C has no label.
     Volume Serial Number is 52EA-B90C
    
     Directory of C:\Users\Root
    
    27/11/2018  13:08    <DIR>          .
    27/11/2018  13:08    <DIR>          ..
    23/08/2016  11:00             2,258 .adalcache
    12/09/2016  18:06    <DIR>          .anaconda
    [...]
    

    The question ? mark is used to provide in-notebook help:

    import pandas as pd
    import numpy as np
    
    df = pd.DataFrame([[np.nan, 2, np.nan, 0],
                       [3, 4, np.nan, 1],
                       [np.nan, np.nan, np.nan, 5],
                       [np.nan, 3, np.nan, 4]],
                       columns=list('ABCD'))
    
    df.fillna?
    # result:
    
    Signature: df.fillna(value=None, method=None, axis=None, inplace=False, limit=None, downcast=None, **kwargs)
    Docstring:
    Fill NA/NaN values using the specified method
    
    Parameters
    ----------
    value : scalar, dict, Series, or DataFrame
        Value to use to fill holes (e.g. 0), alternately a
        dict/Series/DataFrame of values specifying which value to use for
        each index (for a Series) or column (for a DataFrame). (values not
        in the dict/Series/DataFrame will not be filled). This value cannot
        be a list.
    method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None
        Method to use for filling holes in reindexed Series
        pad / ffill: propagate last valid observation forward to next valid
        backfill / bfill: use NEXT valid observation to fill gap
    axis : {0, 1, 'index', 'columns'}
    inplace : boolean, default False
        If True, fill in place. Note: this will modify any
        other views on this object, (e.g. a no-copy slice for a column in a
        DataFrame).
    limit : int, default None
        If method is specified, this is the maximum number of consecutive
        NaN values to forward/backward fill. In other words, if there is
        a gap with more than this number of consecutive NaNs, it will only
        be partially filled. If method is not specified, this is the
        maximum number of entries along the entire axis where NaNs will be
        filled.
    downcast : dict, default is None
        a dict of item->dtype of what to downcast if possible,
        or the string 'infer' which will try to downcast to an appropriate
        equal type (e.g. float64 to int64 if possible)
    
    See Also
    --------
    reindex, asfreq
    
    Returns
    -------
    filled : DataFrame
    File:      c:\users\root\anaconda3\lib\site-packages\pandas\core\frame.py
    Type:      method  
    

    And as it should be clear by now, none of these marks is pandas-specific:

    np.argmax?
    # result:
    
    Signature: np.argmax(a, axis=None, out=None)
    Docstring:
    Returns the indices of the maximum values along an axis.
    
    Parameters
    ----------
    a : array_like
        Input array.
    axis : int, optional
        By default, the index is into the flattened array, otherwise
        along the specified axis.
    out : array, optional
        If provided, the result will be inserted into this array. It should
        be of the appropriate shape and dtype.
    
    Returns
    -------
    index_array : ndarray of ints
        Array of indices into the array. It has the same shape as `a.shape`
        with the dimension along `axis` removed.
    
    See Also
    --------
    ndarray.argmax, argmin
    amax : The maximum value along a given axis.
    unravel_index : Convert a flat index into an index tuple.
    
    Notes
    -----
    In case of multiple occurrences of the maximum values, the indices
    corresponding to the first occurrence are returned.
    
    Examples
    --------
    >>> a = np.arange(6).reshape(2,3)
    >>> a
    array([[0, 1, 2],
           [3, 4, 5]])
    >>> np.argmax(a)
    5
    >>> np.argmax(a, axis=0)
    array([1, 1, 1])
    >>> np.argmax(a, axis=1)
    array([2, 2])
    
    >>> b = np.arange(6)
    >>> b[1] = 5
    >>> b
    array([0, 5, 2, 3, 4, 5])
    >>> np.argmax(b) # Only the first occurrence is returned.
    1
    File:      c:\users\root\anaconda3\lib\site-packages\numpy\core\fromnumeric.py
    Type:      function
    
    0 讨论(0)
提交回复
热议问题