I have a number of tight loops I\'m trying to optimize with GCC and intrinsics. Consider for example the following function.
void triad(float *x, float *y,
Final code:
#define SF sizeof(float)
#ifndef NO //floats per vector, compile with -DNO = 1,2,4,8,...
#define NO 8 //MUST be power of two
#endif
void triadfinaler(float const *restrict x, float const *restrict y, \
float *restrict z, size_t n)
{
float *restrict d = __builtin_assume_aligned(z, NO*SF); //gcc builtin,
float const *restrict m = __builtin_assume_aligned(y, NO*SF); //optional but produces
float const *restrict a = __builtin_assume_aligned(x, NO*SF); //better code
float const k = 3.14159f;
n*=SF;
while (n &= ~((size_t)(NO*SF)-1)) //this is why NO*SF must be power of two
{
size_t nl = n/SF;
for (size_t i = 0; i<NO; i++)
{
d[nl-NO+i] = k * m[nl-NO+i] + a[nl-NO+i];
}
n -= (NO*SF);
}
}
I prefer to let the compiler choose the instructions, rather than using intrinsics (not least because you used intel-intrinsics, which gcc doesn't really like). Anyway, the following code produces nice assembly for me on gcc 4.8:
void triad(float *restrict x, float *restrict y, float *restrict z, size_t n)
//I hope you weren't aliasing any function arguments... Oh, an it's void, not float
{
float *restrict d = __builtin_assume_aligned(z, 32); // Uh, make sure your arrays
float *restrict m = __builtin_assume_aligned(y, 32); // are aligned? Faster that way
float *restrict a = __builtin_assume_aligned(x, 32); //
float const k = 3.14159f;
while (n &= ~((size_t)0x7)) //black magic, causes gcc to omit code for non-multiples of 8 floats
{
n -= 8; //You were always computing on 8 floats at a time, right?
d[n+0] = k * m[n+0] + a[n+0]; //manual unrolling
d[n+1] = k * m[n+1] + a[n+1];
d[n+2] = k * m[n+2] + a[n+2];
d[n+3] = k * m[n+3] + a[n+3];
d[n+4] = k * m[n+4] + a[n+4];
d[n+5] = k * m[n+5] + a[n+5];
d[n+6] = k * m[n+6] + a[n+6];
d[n+7] = k * m[n+7] + a[n+7];
}
}
This produces nice code for my corei7avx2, with -O3:
triad:
andq $-8, %rcx
je .L8
vmovaps .LC0(%rip), %ymm1
.L4:
subq $8, %rcx
vmovaps (%rsi,%rcx,4), %ymm0
vfmadd213ps (%rdi,%rcx,4), %ymm1, %ymm0
vmovaps %ymm0, (%rdx,%rcx,4)
andq $-8, %rcx
jne .L4
vzeroupper
.L8:
rep ret
.cfi_endproc
.LC0:
.long 1078530000
.long 1078530000
.long 1078530000
.long 1078530000
.long 1078530000
.long 1078530000
.long 1078530000
.long 1078530000
Edit:
I was a bit disappointed with the compiler not optimizing this code down to the last instruction, so I messed around with it a bit more. Just changing the order of things in the loop got rid of the AND
emitted by the compiler, which got me on the right track. I then only had to get it to not do unnecessary address calculation in the loop instead. Sigh.
void triadtwo(float *restrict x, float *restrict y, float *restrict z, size_t n)
{
float *restrict d = __builtin_assume_aligned(z, 32);
float *restrict m = __builtin_assume_aligned(y, 32);
float *restrict a = __builtin_assume_aligned(x, 32);
float const k = 3.14159f;
n<<=2;
while (n &= -32)
{
d[(n>>2)-8] = k * m[(n>>2)-8] + a[(n>>2)-8];
d[(n>>2)-7] = k * m[(n>>2)-7] + a[(n>>2)-7];
d[(n>>2)-6] = k * m[(n>>2)-6] + a[(n>>2)-6];
d[(n>>2)-5] = k * m[(n>>2)-5] + a[(n>>2)-5];
d[(n>>2)-4] = k * m[(n>>2)-4] + a[(n>>2)-4];
d[(n>>2)-3] = k * m[(n>>2)-3] + a[(n>>2)-3];
d[(n>>2)-2] = k * m[(n>>2)-2] + a[(n>>2)-2];
d[(n>>2)-1] = k * m[(n>>2)-1] + a[(n>>2)-1];
n -= 32;
}
}
Ugly code? Yes. But the assembly:
triadtwo:
salq $2, %rcx
andq $-32, %rcx
je .L54
vmovaps .LC0(%rip), %ymm1
.L50:
vmovaps -32(%rsi,%rcx), %ymm0
vfmadd213ps -32(%rdi,%rcx), %ymm1, %ymm0
vmovaps %ymm0, -32(%rdx,%rcx)
subq $32, %rcx
jne .L50
vzeroupper
.L54:
rep ret
.cfi_endproc
.LC0:
.long 1078530000
.long 1078530000
.long 1078530000
.long 1078530000
.long 1078530000
.long 1078530000
.long 1078530000
.long 1078530000
Mmmmhhh, glorious five instructions in the loop, macro-op fusable subtract-and-branch...
The instruction decoder on Intel Ivy Bridge or later can fuse the cmp and jne into a single operation in the pipeline (called macro-op fusion), so on these recent processors the cmp should disappear anyway.
How about this. Compiler is gcc 4.9.0 mingw x64:
void triad(float *x, float *y, float *z, const int n) {
float k = 3.14159f;
intptr_t i;
__m256 k4 = _mm256_set1_ps(k);
for(i = -n; i < 0; i += 8) {
_mm256_store_ps(&z[i+n], _mm256_add_ps(_mm256_load_ps(&x[i+n]), _mm256_mul_ps(k4, _mm256_load_ps(&y[i+n]))));
}
}
gcc -c -O3 -march=corei7 -mavx2 triad.c
0000000000000000 <triad>:
0: 44 89 c8 mov eax,r9d
3: f7 d8 neg eax
5: 48 98 cdqe
7: 48 85 c0 test rax,rax
a: 79 31 jns 3d <triad+0x3d>
c: c5 fc 28 0d 00 00 00 00 vmovaps ymm1,YMMWORD PTR [rip+0x0]
14: 4d 63 c9 movsxd r9,r9d
17: 49 c1 e1 02 shl r9,0x2
1b: 4c 01 ca add rdx,r9
1e: 4c 01 c9 add rcx,r9
21: 4d 01 c8 add r8,r9
24: c5 f4 59 04 82 vmulps ymm0,ymm1,YMMWORD PTR [rdx+rax*4]
29: c5 fc 58 04 81 vaddps ymm0,ymm0,YMMWORD PTR [rcx+rax*4]
2e: c4 c1 7c 29 04 80 vmovaps YMMWORD PTR [r8+rax*4],ymm0
34: 48 83 c0 08 add rax,0x8
38: 78 ea js 24 <triad+0x24>
3a: c5 f8 77 vzeroupper
3d: c3 ret
Like your hand written code, gcc is using 5 instructions for the loop. The gcc code uses scale=4 where yours uses scale=1. I was able to get gcc to use scale=1 with a 5 instruction loop, but the C code is awkward and 2 of the AVX instructions in the loop grow from 5 bytes to 6 bytes.