Is there any code out there (or a built-in function) which allows outputting a floating point number in engineering notation?
For example, 1.5e-4
would
Rather than subclassing, I'd take advantage of the fact that Double implements IFormattable and write an IFormatProvider that formats the number. Then I'd have code that looks similar to:
double d = 123.45;
Console.WriteLine(d.ToString(null, new MyCustomFormat()));
Here is another version that handles negative and without rounding
public static string ToEngineering(this double value)
{
var absValue = Math.Abs(value);
var exp = absValue < 0.001 ? 0 : (int)(Math.Floor(Math.Log10(absValue) / 3.0) * 3.0);
var newValue = value * Math.Pow(10.0, -exp);
return $"{newValue}e{exp}";
}
Combining two of the earlier answers and adding a unit (volt, etc.) gives nice tidy answers like 11000 volts as 11kV.
public static string ToEngineering(this double value, string unitName)
{
int exp = (int)(Math.Floor(Math.Log10(value) / 3.0) * 3.0);
double newValue = value * Math.Pow(10.0, -exp);
if (newValue >= 1000.0)
{
newValue = newValue / 1000.0;
exp = exp + 3;
}
var symbol = String.Empty;
switch (exp)
{
case 3:
symbol = "k";
break;
case 6:
symbol = "M";
break;
case 9:
symbol = "G";
break;
case 12:
symbol = "T";
break;
case -3:
symbol = "m";
break;
case -6:
symbol = "μ";
break;
case -9:
symbol = "n";
break;
case -12:
symbol = "p";
break;
}
return string.Format("{0:##0.000} {1}{2}", newValue, symbol, unitName);
}
This is an old thread, but the answer might as well be correct. Issues with the existing code: it doesn't handle NaN, any of the infinities, negative numbers, or very small number (like double.Epsilon). And you can't pass in a precision.
My code is:
static string DoubleToEngineering(double value, string displayPrecision)
{
string Retval;
if (double.IsNaN(value)
|| double.IsInfinity(value)
|| double.IsNegativeInfinity(value)
|| double.IsPositiveInfinity(value)
|| value == 0.0
)
{
Retval = String.Format("{0:" + "F" + displayPrecision + "}", value);
return Retval;
}
bool isNeg = value < 0;
if (isNeg) value = -value;
int exp = (int)(Math.Floor(Math.Log10(value) / 3.0) * 3.0);
int powerToRaise = -exp;
double newValue = value;
// Problem: epsilon is something-324
// The biggest possible number is somethinge306
// You simply can't do a Math.Power (10, 324), it becomes infiniity.
if (powerToRaise > 300)
{
powerToRaise -= 300;
newValue = newValue * Math.Pow(10.0, 300);
}
newValue = newValue * Math.Pow(10.0, powerToRaise);
// I don't know when this below is triggered.
if (newValue >= 1000.0)
{
newValue = newValue / 1000.0;
exp = exp + 3;
}
var fmt = "{0:F" + displayPrecision + "}";
Retval = String.Format (fmt, newValue);
if (exp != 0) Retval += String.Format("e{0}", exp);
if (isNeg) Retval = "-" + Retval;
return Retval;
}
Test cases are below. My personal standard for test cases (sorry, this doesn't follow the latest and best NUnit guidance): the public static Test() takes no parameters and return the number of errors. It normally calls a private static TestOne(args, expected) which calculates the actual value, compared to the expected value, and returns the number of errors.
private static int TestDoubleToEngineeringOne(double value, string expected)
{
var fakePrecision = "4";
int NError = 0;
var actual = DoubleToEngineering(value, fakePrecision);
if (actual != expected)
{
System.Diagnostics.Debug.WriteLine($"ERROR: DoubleToEngineering({value}) expected {expected} actual {actual}");
NError++;
}
return NError;
}
public static int TestDoubleToEngineering()
{
int NError = 0;
NError += TestDoubleToEngineeringOne(0, "0.0000");
NError += TestDoubleToEngineeringOne(1, "1.0000");
NError += TestDoubleToEngineeringOne(2, "2.0000");
NError += TestDoubleToEngineeringOne(3, "3.0000");
NError += TestDoubleToEngineeringOne(10, "10.0000");
NError += TestDoubleToEngineeringOne(999, "999.0000");
NError += TestDoubleToEngineeringOne(1000, "1.0000e3");
NError += TestDoubleToEngineeringOne(1.234E21, "1.2340e21");
NError += TestDoubleToEngineeringOne(-1, "-1.0000");
NError += TestDoubleToEngineeringOne(-999, "-999.0000");
NError += TestDoubleToEngineeringOne(-1000, "-1.0000e3");
NError += TestDoubleToEngineeringOne(0.1, "100.0000e-3");
NError += TestDoubleToEngineeringOne(0.02, "20.0000e-3");
NError += TestDoubleToEngineeringOne(0.003, "3.0000e-3");
NError += TestDoubleToEngineeringOne(0.0004, "400.0000e-6");
NError += TestDoubleToEngineeringOne(0.00005, "50.0000e-6");
NError += TestDoubleToEngineeringOne(double.NaN, "NaN");
NError += TestDoubleToEngineeringOne(double.PositiveInfinity, "∞");
NError += TestDoubleToEngineeringOne(double.NegativeInfinity, "-∞");
NError += TestDoubleToEngineeringOne(double.Epsilon, "4.9407e-324");
NError += TestDoubleToEngineeringOne(double.MaxValue, "179.7693e306");
NError += TestDoubleToEngineeringOne(double.MinValue, "-179.7693e306");
return NError;
}
To solve this problem, you want to create a class (call it Engineering) which inherits from Float on which you override the ToString() member.
Edit: Okay, I understand the issue now. Still, the solution is subclassing.
This may need refactoring:
private static string ToEngineeringNotation(this double d)
{
double exponent = Math.Log10(Math.Abs(d));
if (Math.Abs(d) >= 1)
{
switch ((int)Math.Floor(exponent))
{
case 0: case 1: case 2:
return d.ToString();
case 3: case 4: case 5:
return (d / 1e3).ToString() + "k";
case 6: case 7: case 8:
return (d / 1e6).ToString() + "M";
case 9: case 10: case 11:
return (d / 1e9).ToString() + "G";
case 12: case 13: case 14:
return (d / 1e12).ToString() + "T";
case 15: case 16: case 17:
return (d / 1e15).ToString() + "P";
case 18: case 19: case 20:
return (d / 1e18).ToString() + "E";
case 21: case 22: case 23:
return (d / 1e21).ToString() + "Z";
default:
return (d / 1e24).ToString() + "Y";
}
}
else if (Math.Abs(d) > 0)
{
switch ((int)Math.Floor(exponent))
{
case -1: case -2: case -3:
return (d * 1e3).ToString() + "m";
case -4: case -5: case -6:
return (d * 1e6).ToString() + "μ";
case -7: case -8: case -9:
return (d * 1e9).ToString() + "n";
case -10: case -11: case -12:
return (d * 1e12).ToString() + "p";
case -13: case -14: case -15:
return (d * 1e15).ToString() + "f";
case -16: case -17: case -18:
return (d * 1e15).ToString() + "a";
case -19: case -20: case -21:
return (d * 1e15).ToString() + "z";
default:
return (d * 1e15).ToString() + "y";
}
}
else
{
return "0";
}
}