I have a dataframe in the following format:
id | name | logs
---+--------------------+-----------------------
This is a perfect case for tidyr:
library(tidyr)
library(dplyr)
dat %>% unnest(logs)
Another data.table
option
library(data.table)
dt <- data.table(df)
dt[,.(id,logs=logs[[1]]), by = name]
Using listCol_l
from splitstackshape
could be a good option here as the column "logs" in the data.frame
is a list
library(splitstackshape)
listCol_l(df, 'logs')
# id name logs_ul
#1: 148 avihil1 Z47331572
#2: 149 Niarfe Z47031573
#3: 150 doug henderson F47531574
#4: 150 doug henderson B195945
#5: 150 doug henderson D186871
#6: 150 doug henderson S192939
#7: 150 doug henderson S182865
#8: 150 doug henderson G19539045
#9: 151 nick tan A47231575
#10: 151 nick tan A190933
#11: 151 nick tan C181859
#12: 152 madisp F47431576
#13: 153 woodbusy B47231577
#14: 153 woodbusy D193936
#15: 153 woodbusy Q184862
#16: 154 kevinhcross Y47331579
#17: 155 cylol A47531580
#18: 155 cylol Z195944
#19: 155 cylol B185870
#20: 156 andrewarrow N47731581
#21: 157 gstavrev E47231582
Just to show another option
library(data.table)
setDT(df)[, .(logs = unlist(logs)), by = .(id, name)]