Creating a numpy array of 3D coordinates from three 1D arrays

前端 未结 4 694
名媛妹妹
名媛妹妹 2020-12-03 14:15

Suppose I have three arbitrary 1D arrays, for example:

x_p = np.array((1.0, 2.0, 3.0, 4.0, 5.0))
y_p = np.array((2.0, 3.0, 4.0))
z_p = np.array((8.0, 9.0))
<         


        
相关标签:
4条回答
  • 2020-12-03 14:56

    For those who had to stay with numpy <1.7.x, here is a simple two-liner solution:

    g_p=np.zeros((x_p.size, y_p.size, z_p.size))
    array_you_want=array(zip(*[item.flatten() for item in \
                                     [g_p+x_p[...,np.newaxis,np.newaxis],\
                                      g_p+y_p[...,np.newaxis],\
                                      g_p+z_p]]))
    

    Very easy to expand to even higher dimenision as well. Cheers!

    0 讨论(0)
  • 2020-12-03 14:59

    You can use itertools.product:

    def sol1():
        points = np.array( list(product(x_p, y_p, z_p)) )
    

    Another solution using iterators and np.take showed to be about 3X faster for your case:

    from itertools import izip, product
    
    def sol2():
        points = np.empty((len(x_p)*len(y_p)*len(z_p),3))
    
        xi,yi,zi = izip(*product( xrange(len(x_p)),
                                  xrange(len(y_p)),
                                  xrange(len(z_p))  ))
    
        points[:,0] = np.take(x_p,xi)
        points[:,1] = np.take(y_p,yi)
        points[:,2] = np.take(z_p,zi)
        return points
    

    Timing results:

    In [3]: timeit sol1()
    10000 loops, best of 3: 126 µs per loop
    
    In [4]: timeit sol2()
    10000 loops, best of 3: 42.9 µs per loop
    
    In [6]: timeit ops()
    10000 loops, best of 3: 59 µs per loop
    
    In [11]: timeit joekingtons() # with your permission Joe...
    10000 loops, best of 3: 56.2 µs per loop
    

    So, only my second solution and Joe Kington's solution would give you some performance gain...

    0 讨论(0)
  • 2020-12-03 15:04

    For your specific example, mgrid is quite useful.:

    In [1]: import numpy as np
    In [2]: points = np.mgrid[1:6, 2:5, 8:10]
    In [3]: points.reshape(3, -1).T
    Out[3]:
    array([[1, 2, 8],
           [1, 2, 9],
           [1, 3, 8],
           [1, 3, 9],
           [1, 4, 8],
           [1, 4, 9],
           [2, 2, 8],
           [2, 2, 9],
           [2, 3, 8],
           [2, 3, 9],
           [2, 4, 8],
           [2, 4, 9],
           [3, 2, 8],
           [3, 2, 9],
           [3, 3, 8],
           [3, 3, 9],
           [3, 4, 8],
           [3, 4, 9],
           [4, 2, 8],
           [4, 2, 9],
           [4, 3, 8],
           [4, 3, 9],
           [4, 4, 8],
           [4, 4, 9],
           [5, 2, 8],
           [5, 2, 9],
           [5, 3, 8],
           [5, 3, 9],
           [5, 4, 8],
           [5, 4, 9]])
    

    More generally, if you have specific arrays that you want to do this with, you'd use meshgrid instead of mgrid. However, you'll need numpy 1.7 or later for it to work in more than two dimensions.

    0 讨论(0)
  • 2020-12-03 15:09

    To use numpy mesh grid on the above example the following will work:

    np.vstack(np.meshgrid(x_p,y_p,z_p)).reshape(3,-1).T
    

    Numpy meshgrid for grids of more then two dimensions require numpy 1.7. To circumvent this and pulling the relevant data from the source code.

    def ndmesh(*xi,**kwargs):
        if len(xi) < 2:
            msg = 'meshgrid() takes 2 or more arguments (%d given)' % int(len(xi) > 0)
            raise ValueError(msg)
    
        args = np.atleast_1d(*xi)
        ndim = len(args)
        copy_ = kwargs.get('copy', True)
    
        s0 = (1,) * ndim
        output = [x.reshape(s0[:i] + (-1,) + s0[i + 1::]) for i, x in enumerate(args)]
    
        shape = [x.size for x in output]
    
        # Return the full N-D matrix (not only the 1-D vector)
        if copy_:
            mult_fact = np.ones(shape, dtype=int)
            return [x * mult_fact for x in output]
        else:
            return np.broadcast_arrays(*output)
    

    Checking the result:

    print np.vstack((ndmesh(x_p,y_p,z_p))).reshape(3,-1).T
    
    [[ 1.  2.  8.]
     [ 1.  2.  9.]
     [ 1.  3.  8.]
     ....
     [ 5.  3.  9.]
     [ 5.  4.  8.]
     [ 5.  4.  9.]]
    

    For the above example:

    %timeit sol2()
    10000 loops, best of 3: 56.1 us per loop
    
    %timeit np.vstack((ndmesh(x_p,y_p,z_p))).reshape(3,-1).T
    10000 loops, best of 3: 55.1 us per loop
    

    For when each dimension is 100:

    %timeit sol2()
    1 loops, best of 3: 655 ms per loop
    In [10]:
    
    %timeit points = np.vstack((ndmesh(x_p,y_p,z_p))).reshape(3,-1).T
    10 loops, best of 3: 21.8 ms per loop
    

    Depending on what you want to do with the data, you can return a view:

    %timeit np.vstack((ndmesh(x_p,y_p,z_p,copy=False))).reshape(3,-1).T
    100 loops, best of 3: 8.16 ms per loop
    
    0 讨论(0)
提交回复
热议问题