Is there a way to flatten an arbitrarily nested Spark Dataframe? Most of the work I\'m seeing is written for specific schema, and I\'d like to be able to generically flatten
This issue might be a bit old, but for anyone out there still looking for a solution you can flatten complex data types inline using select *:
first let's create the nested dataframe:
from pyspark.sql import HiveContext
hc = HiveContext(sc)
nested_df = hc.read.json(sc.parallelize(["""
{
"field1": 1,
"field2": 2,
"nested_array":{
"nested_field1": 3,
"nested_field2": 4
}
}
"""]))
now to flatten it:
flat_df = nested_df.select("field1", "field2", "nested_array.*")
You'll find useful examples here: https://docs.databricks.com/delta/data-transformation/complex-types.html
If you have too many nested arrays, you can use:
flat_cols = [c[0] for c in nested_df.dtypes if c[1][:6] != 'struct']
nested_cols = [c[0] for c in nested_df.dtypes if c[1][:6] == 'struct']
flat_df = nested_df.select(*flat_cols, *[c + ".*" for c in nested_cols])
I've developed a recursively approach to flatten any nested DataFrame.
The implementation is on the AWS Data Wrangler code base on GitHub.
P.S. The Spark support was deprecated in the package, but the code base stills useful.
The following gist will flatten the structure of the nested json,
import typing as T
import cytoolz.curried as tz
import pyspark
def schema_to_columns(schema: pyspark.sql.types.StructType) -> T.List[T.List[str]]:
"""
Produce a flat list of column specs from a possibly nested DataFrame schema
"""
columns = list()
def helper(schm: pyspark.sql.types.StructType, prefix: list = None):
if prefix is None:
prefix = list()
for item in schm.fields:
if isinstance(item.dataType, pyspark.sql.types.StructType):
helper(item.dataType, prefix + [item.name])
else:
columns.append(prefix + [item.name])
helper(schema)
return columns
def flatten_frame(frame: pyspark.sql.DataFrame) -> pyspark.sql.DataFrame:
aliased_columns = list()
for col_spec in schema_to_columns(frame.schema):
c = tz.get_in(col_spec, frame)
if len(col_spec) == 1:
aliased_columns.append(c)
else:
aliased_columns.append(c.alias(':'.join(col_spec)))
return frame.select(aliased_columns)
You can then flatten the nested data as
flatten_data = flatten_frame(nested_df)
This will give you the flatten dataframe.
The gist was taken from https://gist.github.com/DGrady/b7e7ff3a80d7ee16b168eb84603f5599
Here's my final approach:
1) Map the rows in the dataframe to an rdd of dict. Find suitable python code online for flattening dict.
flat_rdd = nested_df.map(lambda x : flatten(x))
where
def flatten(x):
x_dict = x.asDict()
...some flattening code...
return x_dict
2) Convert the RDD[dict] back to a dataframe
flat_df = sqlContext.createDataFrame(flat_rdd)