I looking for a way, specifically in PHP that I will be guaranteed to always get a unique key.
I have done the following:
strtolower(substr(crypt(tim
I usually do it like this:
$this->password = '';
for($i=0; $i<10; $i++)
{
if($i%2 == 0)
$this->password .= chr(rand(65,90));
if($i%3 == 0)
$this->password .= chr(rand(97,122));
if($i%4 == 0)
$this->password .= chr(rand(48,57));
}
I suppose there are some theoretical holes but I've never had an issue with duplication. I usually use it for temporary passwords (like after a password reset) and it works well enough for that.
Ingoring the crypting part that does not have much to do with creating a unique value I usually use this one:
function GetUniqueValue()
{
static $counter = 0; //initalized only 1st time function is called
return strtr(microtime(), array('.' => '', ' ' => '')) . $counter++;
}
When called in same process $counter is increased so value is always unique in same process.
When called in different processes you must be really unlucky to get 2 microtime() call with the same values, think that microtime() calls usually have different values also when called in same script.
You may be interested in this article which deals with the same issue: GUIDs are globally unique, but substrings of GUIDs aren't.
The goal of this algorithm is to use the combination of time and location ("space-time coordinates" for the relativity geeks out there) as the uniqueness key. However, timekeeping is not perfect, so there's a possibility that, for example, two GUIDs are generated in rapid succession from the same machine, so close to each other in time that the timestamp would be the same. That's where the uniquifier comes in.
As Frank Kreuger commented, go with a GUID generator.
Like this one
You might be interested in Steve Gibson's over-the-top-secure implementation of a password generator (no source, but he has a detailed description of how it works) at https://www.grc.com/passwords.htm.
The site creates huge 64-character passwords but, since they're completely random, you could easily take the first 8 (or however many) characters for a less secure but "as random as possible" password.
EDIT: from your later answers I see you need something more like a GUID than a password, so this probably isn't what you want...
There are only 3 ways to generate unique values, rather they be passwords, user IDs, etc.:
Any other method is not guaranteed. Keep in mind, fundamentally you are generating a binary number (it is a computer), but then you can encode it in Hexadecimal, Decimal, Base64, or a word list. Pick an encoding that fits your usage. Usually for user entered data you want some variation of Base32 (which you hinted at).
Note about GUIDS: They gain their strength of uniqueness from their length and the method used to generate them. Anything less than 128-bits is not secure. Beyond random number generation there are characteristics that go into a GUID to make it more unique. Keep in mind they are only practically unique, not completely unique. It is possible, although practically impossible to have a duplicate.
Updated Note about GUIDS: Since writing this I learned that many GUID generators use a cryptographically secure random number generator (difficult or impossible to predict the next number generated, and a not likely to repeat). There are actually 5 different UUID algorithms. Algorithm 4 is what Microsoft currently uses for the Windows GUID generation API. A GUID is Microsoft's implementation of the UUID standard.
Update: If you want 7 to 16 characters then you need to use either method 2 or 3.
Bottom line: Frankly there is no such thing as completely unique. Even if you went with a sequential generator you would eventually run out of storage using all the atoms in the universe, thus looping back on yourself and repeating. Your only hope would be the heat death of the universe before reaching that point.
Even the best random number generator has a possibility of repeating equal to the total size of the random number you are generating. Take a quarter for example. It is a completely random bit generator, and its odds of repeating are 1 in 2.
So it all comes down to your threshold of uniqueness. You can have 100% uniqueness in 8 digits for 1,099,511,627,776 numbers by using a sequence and then base32 encoding it. Any other method that does not involve checking against a list of past numbers only has odds equal to n/1,099,511,627,776 (where n=number of previous numbers generated) of not being unique.