parfor
is a convenient way to distribute independent iterations of intensive computations among several \"workers\". One meaningful restriction is that pa
MrAzzman already pointed out how to linearise nested loops. Here is a general solution to linearise n nested loops.
1) Assuming you have a simple nested loop structure like this:
%dummy function for demonstration purposes
f=@(a,b,c)([a,b,c]);
%three loops
X=cell(4,5,6);
for a=1:size(X,1);
for b=1:size(X,2);
for c=1:size(X,3);
X{a,b,c}=f(a,b,c);
end
end
end
2) Basic linearisation using a for loop:
%linearized conventional loop
X=cell(4,5,6);
iterations=size(X);
for ix=1:prod(iterations)
[a,b,c]=ind2sub(iterations,ix);
X{a,b,c}=f(a,b,c);
end
3) Linearisation using a parfor loop.
%linearized parfor loop
X=cell(4,5,6);
iterations=size(X);
parfor ix=1:prod(iterations)
[a,b,c]=ind2sub(iterations,ix);
X{ix}=f(a,b,c);
end
4) Using the second version with a conventional for loop, the order in which the iterations are executed is altered. If anything relies on this you have to reverse the order of the indices.
%linearized conventional loop
X=cell(4,5,6);
iterations=fliplr(size(X));
for ix=1:prod(iterations)
[c,b,a]=ind2sub(iterations,ix);
X{a,b,c}=f(a,b,c);
end
Reversing the order when using a parfor
loop is irrelevant. You can not rely on the order of execution at all. If you think it makes a difference, you can not use parfor
.
You should be able to do this with bsxfun
. I believe that bsxfun
will parallelise code where possible (see here for more information), in which case you should be able to do the following:
bsxfun(@somefun,(1:6)',1:6);
You would probably want to benchmark this though.
Alternatively, you could do something like the following:
function parfor_allpairs(fun, num_rows, num_cols)
parfor i=1:(num_rows*num_cols)
fun(mod(i-1,num_rows)+1,floor(i/num_cols)+1);
end
then call with:
parfor_allpairs(@somefun,6,6);
Based on the answers from @DanielR and @MrAzzaman, I am posting two functions, iterlin
and iterget
in place of prod
and ind2sub
that allow iteration over ranges also if those do not start from one. An example for the pattern becomes
rng = [1, 4; 2, 7; 3, 10];
parfor k = iterlin(rng)
[plate, row, col] = iterget(rng, k);
% time-consuming computations here %
end
The script will process the wells in rows 2 to 7 and columns 3 to 10 on plates 1 to 4 without any workers idling while more wells are waiting to be processed. In hope that this helps someone, I deposited iterlin
and iterget
at the MATLAB File Exchange.