In my quest to build a condition variable class I stumbled on a trivially simple way of doing it and I\'d like to share this with the stack overflow community. I was googlin
i think i found "The WAY" on the tipical problem of a
List<string> log;
used by multiple thread, one tha fill it and the other processing and the other one empting
avoiding empty
while(true){
//stuff
Thread.Sleep(100)
}
variables used in Program
public static readonly List<string> logList = new List<string>();
public static EventWaitHandle evtLogListFilled = new AutoResetEvent(false);
the processor work like
private void bw_DoWorkLog(object sender, DoWorkEventArgs e)
{
StringBuilder toFile = new StringBuilder();
while (true)
{
try
{
{
//waiting form a signal
Program.evtLogListFilled.WaitOne();
try
{
//critical section
Monitor.Enter(Program.logList);
int max = Program.logList.Count;
for (int i = 0; i < max; i++)
{
SetText(Program.logList[0]);
toFile.Append(Program.logList[0]);
toFile.Append("\r\n");
Program.logList.RemoveAt(0);
}
}
finally
{
Monitor.Exit(Program.logList);
// end critical section
}
try
{
if (toFile.Length > 0)
{
Logger.Log(toFile.ToString().Substring(0, toFile.Length - 2));
toFile.Clear();
}
}
catch
{
}
}
}
catch (Exception ex)
{
Logger.Log(System.Reflection.MethodBase.GetCurrentMethod(), ex);
}
Thread.Sleep(100);
}
}
On the filler thread we have
public static void logList_add(string str)
{
try
{
try
{
//critical section
Monitor.Enter(Program.logList);
Program.logList.Add(str);
}
finally
{
Monitor.Exit(Program.logList);
//end critical section
}
//set start
Program.evtLogListFilled.Set();
}
catch{}
}
this solution is fully tested, the istruction Program.evtLogListFilled.Set(); may release the lock on Program.evtLogListFilled.WaitOne() and also the next future lock.
I think this is the simpliest way.
The accepted answer is not a good one. According to the Dequeue() code, Wait() gets called in each loop, which causes unnecessary waiting thus excessive context switches. The correct paradigm should be, wait() is called when the waiting condition is met. In this case, the waiting condition is q.Count() == 0.
Here's a better pattern to follow when it comes to using a Monitor. https://msdn.microsoft.com/en-us/library/windows/desktop/ms682052%28v=vs.85%29.aspx
Another comment on C# Monitor is, it does not make use of a condition variable(which will essentially wake up all threads waiting for that lock, regardless of the conditions in which they went to wait; consequently, some threads may grab the lock and immediately return to sleep when they find the waiting condition hasn't been changed). It does not provide you with as find-grained threading control as pthreads. But it's .Net anyway, so not completely unexpected.
=============upon the request of John, here's an improved version=============
class BlockingQueue<T>
{
readonly Queue<T> q = new Queue<T>();
public void Enqueue(T item)
{
lock (q)
{
while (false) // condition predicate(s) for producer; can be omitted in this particular case
{
System.Threading.Monitor.Wait(q);
}
// critical section
q.Enqueue(item);
}
// generally better to signal outside the lock scope
System.Threading.Monitor.Pulse(q);
}
public T Dequeue()
{
T t;
lock (q)
{
while (q.Count == 0) // condition predicate(s) for consumer
{
System.Threading.Monitor.Wait(q);
}
// critical section
t = q.Dequeue();
}
// this can be omitted in this particular case; but not if there's waiting condition for the producer as the producer needs to be woken up; and here's the problem caused by missing condition variable by C# monitor: all threads stay on the same waiting queue of the shared resource/lock.
System.Threading.Monitor.Pulse(q);
return t;
}
}
A few things I'd like to point out:
1, I think my solution captures the requirements & definitions more precisely than yours. Specifically, the consumer should be forced to wait if and only if there's nothing left in the queue; otherwise it's up to the OS/.Net runtime to schedule threads. In your solution, however, the consumer is forced to wait in each loop, regardless whether it has actually consumed anything or not - this is the excessive waiting/context switches I was talking about.
2, My solution is symmetric in the sense that both the consumer and the producer code share the same pattern while yours is not. If you did know the pattern and just omitted for this particular case, then I take back this point.
3, Your solution signals inside the lock scope, while my solutions signals outside the lock scope. Please refer to this answer as to why your solution is worse. why should we signal outside the lock scope
I was talking about the flaw of missing condition variables in C# monitor, and here's its impact: there's simply no way for C# to implemented the solution of moving the waiting thread from the condition queue to the lock queue. Therefore, the excessive context switch is doomed to take place in the three-thread scenario proposed by the answer in the link.
Also, the lack of condition variable makes it impossible to distinguish between the various cases where threads wait on the same shared resource/lock, but for different reasons. All waiting threads are place on a big waiting queue for that shared resource, which undermines efficiency.
"But it's .Net anyway, so not completely unexpected" --- it's understandable that .Net does not pursue as high efficiency as C++, it's understandable. But it does not imply programmers should not know the differences and their impacts.
As has been pointed out by h9uest's answer and comments the Monitor's Wait interface does not allow for proper condition variables (i.e. it does not allow for waiting on multiple conditions per shared lock).
The good news is that the other synchronization primitives (e.g. SemaphoreSlim, lock keyword, Monitor.Enter/Exit) in .NET can be used to implement a proper condition variable.
The following ConditionVariable class will allow you to wait on multiple conditions using a shared lock.
class ConditionVariable
{
private int waiters = 0;
private object waitersLock = new object();
private SemaphoreSlim sema = new SemaphoreSlim(0, Int32.MaxValue);
public ConditionVariable() {
}
public void Pulse() {
bool release;
lock (waitersLock)
{
release = waiters > 0;
}
if (release) {
sema.Release();
}
}
public void Wait(object cs) {
lock (waitersLock) {
++waiters;
}
Monitor.Exit(cs);
sema.Wait();
lock (waitersLock) {
--waiters;
}
Monitor.Enter(cs);
}
}
All you need to do is create an instance of the ConditionVariable class for each condition you want to be able to wait on.
object queueLock = new object();
private ConditionVariable notFullCondition = new ConditionVariable();
private ConditionVariable notEmptyCondition = new ConditionVariable();
And then just like in the Monitor class, the ConditionVariable's Pulse and Wait methods must be invoked from within a synchronized block of code.
T Take() {
lock(queueLock) {
while(queue.Count == 0) {
// wait for queue to be not empty
notEmptyCondition.Wait(queueLock);
}
T item = queue.Dequeue();
if(queue.Count < 100) {
// notify producer queue not full anymore
notFullCondition.Pulse();
}
return item;
}
}
void Add(T item) {
lock(queueLock) {
while(queue.Count >= 100) {
// wait for queue to be not full
notFullCondition.Wait(queueLock);
}
queue.Enqueue(item);
// notify consumer queue not empty anymore
notEmptyCondition.Pulse();
}
}
Below is a link to the full source code of a proper Condition Variable class using 100% managed code in C#.
https://github.com/CodeExMachina/ConditionVariable
It's actually incredibly simple, once you know about the semantics of lock
and Monitor
.
But first, you do need an object reference. You can use this
, but remember that this
is public
, in the sense that anyone with a reference to your class can lock on that reference. If you are uncomfortable with this, you can create a new private reference, like this:
readonly object syncPrimitive = new object(); // this is legal
Somewhere in your code where you'd like to be able to provide notifications, it can be accomplished like this:
void Notify()
{
lock (syncPrimitive)
{
Monitor.Pulse(syncPrimitive);
}
}
And the place where you'd do the actual work is a simple looping construct, like this:
void RunLoop()
{
lock (syncPrimitive)
{
for (;;)
{
// do work here...
Monitor.Wait(syncPrimitive);
}
}
}
From the outside, this would look incredibly deadlock-ish but the locking protocol for the Monitor
will release the lock when you call Monitor.Wait
, actually, it's a requirement that you have obtained the lock before you call either Monitor.Pulse
, Monitor.PulseAll
or Monitor.Wait
.
There's one caveat with this approach that you should know about. Since the lock is required to be held before calling the communication methods of Monitor
you should really only hang on to the lock for an as short duration as possible. A variation of the RunLoop
that is more friendly towards long running background tasks would look like this:
void RunLoop()
{
for (;;)
{
// do work here...
lock (syncPrimitive)
{
Monitor.Wait(syncPrimitive);
}
}
}
But now we've changed up the problem a bit, because the lock, is no longer used to protect the shared resource, so, if you code that is do work here...
needs to access a shared resource you need a additional lock, protecting that resource.
We can leverage the above code to create a simple thread-safe producer consumer collection, although .NET already provides an excellent ConcurrentQueue<T>
implementation, this is just to illustrate the simplicity of using Monitor
like this.
class BlockingQueue<T>
{
// We base our queue, on the non-thread safe
// .NET 2.0 queue collection
readonly Queue<T> q = new Queue<T>();
public void Enqueue(T item)
{
lock (q)
{
q.Enqueue(item);
System.Threading.Monitor.Pulse(q);
}
}
public T Dequeue()
{
lock (q)
{
for (; ; )
{
if (q.Count > 0)
{
return q.Dequeue();
}
System.Threading.Monitor.Wait(q);
}
}
}
}
Now the point here is not to build a blocking collection, that also available in the .NET framework (see BlockingCollection). The point is to illustrate how simple it is to build an event driven message system using the Monitor
class in .NET to implement conditional variable. Hope you find this useful.
The class that is similar to conditional variable is the ManualResetEvent, just that the method name is slightly different.
The notify_one()
in C++ would be named Set()
in C#.
The wait()
in C++ would be named WaitOne()
in C#.
Moreover, ManualResetEvent also provides a Reset()
method to set the state of the event to non-signaled.
Go to deadlockempire.github.io/. They have an amazing tutorial that will help you understand the condition variable as well as locks and will cetainly help you write your desired class.
You can step through the following code at deadlockempire.github.io and trace it. Here is the code snippet
while (true) {
Monitor.Enter(mutex);
if (queue.Count == 0) {
Monitor.Wait(mutex);
}
queue.Dequeue();
Monitor.Exit(mutex);
}
while (true) {
Monitor.Enter(mutex);
if (queue.Count == 0) {
Monitor.Wait(mutex);
}
queue.Dequeue();
Monitor.Exit(mutex);
}
while (true) {
Monitor.Enter(mutex);
queue.Enqueue(42);
Monitor.PulseAll(mutex);
Monitor.Exit(mutex);
}