C++ iterate into nested struct field with boost fusion adapt_struct

前端 未结 2 1301
再見小時候
再見小時候 2020-12-03 02:28

Two stackoverflow answers suggest the approach using fusion adapt_struct to iterate over struct fields. The approach looks nice. However, how do you iterate into a field whi

相关标签:
2条回答
  • 2020-12-03 02:36

    I made an example of what you want that you can see at my blog site. In this is case it's a JSON serializer that works with nested structs. It uses a 'more Boost' solution since I saw it in the Boost.Serialization library. (See also below and live on Coliru.)

    The solution uses Fusion Sequence adaptation of structs and a metafunction that walks object members (recursively) - using Boost.TypeTraits and different traits for specific types.

    You can see a more complex example of the same solution at the site for googlecode corbasim project for creating an run-time reflexive API.

    Code listing for the generic JSON serializer:

    See it Live on Coliru

    #ifndef JSON_SERIALIZER_HPP
    #define JSON_SERIALIZER_HPP
    
    #include <boost/type_traits.hpp> // is_array, is_class, remove_bounds
    
    #include <boost/mpl/eval_if.hpp>
    #include <boost/mpl/identity.hpp>
    #include <boost/mpl/next_prior.hpp>
    
    #include <boost/fusion/mpl.hpp>
    #include <boost/fusion/adapted.hpp> // BOOST_FUSION_ADAPT_STRUCT
    
    // boost::fusion::result_of::value_at
    #include <boost/fusion/sequence/intrinsic/value_at.hpp>
    #include <boost/fusion/include/value_at.hpp>
    
    // boost::fusion::result_of::size
    #include <boost/fusion/sequence/intrinsic/size.hpp>
    #include <boost/fusion/include/size.hpp>
    
    // boost::fusion::at
    #include <boost/fusion/sequence/intrinsic/at.hpp>
    #include <boost/fusion/include/at.hpp>
    
    namespace json
    {
    
    // Forward
    template < typename T >
    struct serializer;
    
    namespace detail
    {
    
    namespace iterator
    {
    
    template < typename S, typename N >
    struct Comma
    {
        template < typename Ostream >
        static inline void comma(Ostream& os)
        {
            os << ", ";
        }
    };
    
    template < typename S >
    struct Comma< S, typename boost::mpl::prior< typename boost::fusion::result_of::size< S >::type >::type >
    {
        template < typename Ostream >
        static inline void comma(Ostream& os)
        {
        }
    };
    
    // Iteracion sobre una estructura
    template < typename S, typename N >
    struct StructImpl
    {
        // Tipo del campo actual
        typedef typename boost::fusion::result_of::value_at< S, N >::type current_t;
        typedef typename boost::mpl::next< N >::type next_t;
        typedef boost::fusion::extension::struct_member_name< S, N::value > name_t;
    
        template < typename Ostream >
        static inline void serialize(Ostream& os, const S& s)
        {
            os << "\"" << name_t::call() << "\": ";
            ::json::serializer< current_t >::serialize(os, boost::fusion::at< N >(s));
    
            // Insert comma or not    
            Comma< S, N >::comma(os);
    
            StructImpl< S, next_t >::serialize(os, s);
        }
    };
    
    // Fin de la iteracion sobre estructuras.
    template < typename S >
    struct StructImpl< S, typename boost::fusion::result_of::size< S >::type >
    {
        template < typename Ostream >
        static inline void serialize(Ostream& os, const S& s)
        {
            // Nada que hacer
        }
    };
    
    // Iterador sobre una estructura. Template fachada.
    template < typename S >
    struct Struct : StructImpl< S, boost::mpl::int_< 0 > > {};
    
    } // iterator
    
    template < typename T >
    struct array_serializer 
    {
        typedef array_serializer< T > type;
    
        typedef typename boost::remove_bounds< T >::type slice_t;
    
        static const size_t size = sizeof(T) / sizeof(slice_t);
    
        template < typename Ostream >
        static inline void serialize(Ostream& os, const T& t)
        {
            os << "[";
            for(size_t idx=0; idx<size; idx++)
            {
                ::json::serializer< slice_t >::serialize(os, t[idx]);
                if (idx != size-1)
                    os << ", ";
            }
            os << "]";
        }
    
    };
    
    template < typename T >
    struct struct_serializer 
    {
        typedef struct_serializer< T > type;
    
        template < typename Ostream >
        static inline void serialize(Ostream& os, const T& t)
        {
            os << "{";
            iterator::Struct< T >::serialize(os, t);
            os << "}";
        }
    };
    
    template < typename T >
    struct arithmetic_serializer 
    {
        typedef arithmetic_serializer< T > type;
    
        template < typename Ostream >
        static inline void serialize(Ostream& os, const T& t)
        {
            os << t;
        }
    };
    
    template < typename T >
    struct calculate_serializer
    {
        typedef
            typename boost::mpl::eval_if< boost::is_array< T >,
                boost::mpl::identity< array_serializer < T > >,
            //else
            typename boost::mpl::eval_if< boost::is_class< T >,
                boost::mpl::identity< struct_serializer < T > >,
            //else
                boost::mpl::identity< arithmetic_serializer < T > >
            >
            >::type type;
    
    };
    
    } // detail
    
    template < typename T >
    struct serializer : public detail::calculate_serializer < T >::type
    {
    };
    
    
    } // json
    
    #endif // JSON_SERIALIZER_HPP
    
    //#include "json.hpp"
    #include <iostream>
    
    struct my_other_struct
    {
        int my_other_integer;
    };
    
    struct my_struct
    {
        int my_integer;
    
        typedef int my_array_t[2];
        my_array_t my_array;
    
        typedef my_other_struct my_other_structs_t[3];
        my_other_structs_t my_other_structs;
    };
    
    BOOST_FUSION_ADAPT_STRUCT(my_struct, (int, my_integer) (my_struct::my_array_t, my_array) (my_struct::my_other_structs_t, my_other_structs))
    BOOST_FUSION_ADAPT_STRUCT(my_other_struct, (int, my_other_integer))
    
    
    int main(int argc, char *argv[])
    {
        my_struct s1 = my_struct { 1, { 42, -42 }, { { 11 }, { 22 }, { 33 } } };
    
        json::serializer< my_struct >::serialize(std::cout, s1);
    
        std::cout << std::endl;
    }
    
    0 讨论(0)
  • 2020-12-03 02:54

    Andres gives an excellent answer. The problem in my original code is that "for_each" takes only sequence types. When compiler evaluates the T for an int, it passes to "for_each" an int argument thus it fails. The idea behind Adries' solution is to hide "for_each" in a sequence-specific class (DecImplSeq_s below), and provide an alternative class (DecImplVoid_s) for non-sequence fields. Then create a facade class to divide the decoding of sequence and non-sequence fields (DecCalc_s).

    The common header goes with the first example below to show Adres' idea.

    /* compile with g++ 4.4.6: g++ -I boost_1_35_0 test.cpp */
    #include <typeinfo>
    #include <string>
    #include <boost/fusion/include/sequence.hpp>
    #include <boost/fusion/include/algorithm.hpp>
    #include <boost/fusion/include/adapt_struct.hpp>
    #include <boost/fusion/include/is_sequence.hpp>
    #include <boost/mpl/eval_if.hpp>
    #include <boost/lexical_cast.hpp>
    #include <cxxabi.h>
    #include <stdio.h>
    using namespace boost::fusion;
    

    The common code of the solution derived directly from Adres' sample:

    template <typename T2> struct Dec_s;
    struct AppendToTextBox {
      template <typename T> void operator()(T& t) const {
            //decode T and t as the original code here...
            Dec_s<T>::decode(t);
      }
    };
    template <typename T2> struct DecImplSeq_s {
      typedef DecImplSeq_s<T2> type;
      static void decode(T2   & f) { for_each(f, AppendToTextBox()); };
    };
    template <typename T2> struct DecImplVoid_s {
      typedef DecImplVoid_s<T2> type;
      static void decode(T2   & f) { };
    };
    
    template <typename T2> struct DecCalc_s {
      typedef typename
        boost::mpl::eval_if< traits::is_sequence<T2>, DecImplSeq_s<T2>, DecImplVoid_s<T2> >
      ::type type;
    };
    
    template <typename T2> struct Dec_s : public DecCalc_s<T2>::type { };
    

    Here is how you can use the common code above:

    struct Foo_s { int i; char k[100]; };
    struct Bar_s { int v; Foo_s w; };
    
    BOOST_FUSION_ADAPT_STRUCT( Foo_s,  (int, i)  (char, k[100]) )
    BOOST_FUSION_ADAPT_STRUCT( Bar_s, (int, v)  (Foo_s, w) )
    
    int main(int argc, char *argv[]) {
      Bar_s f = { 2, { 3, "abcd" } };
      Dec_s<Bar_s>::decode(f);
      return 0;
    }
    

    Another solution that is more straightforward without using advanced boost tricks, you can implement a specialized decoder class for each primitive types, without using "eval_if". To use this solution, you need to do a specialization for each primitive type in your structs.

    struct Foo_s { int i; char k[100]; };
    BOOST_FUSION_ADAPT_STRUCT( Foo_s,  (int, i)  (char, k[100]) )
    
    struct Bar_s { int v; Foo_s w; };
    BOOST_FUSION_ADAPT_STRUCT( Bar_s, (int, v)  (Foo_s, w) )
    
    template <typename T2> struct Dec_s {  static void decode(T2   & f); };
    struct AppendToTextBox {
        template <typename T>
        void operator()(T& t) const {
            //decode T and t as the original code here...
            Dec_s<T>::decode(t);
        }
    };
    
    template <typename T2> void Dec_s<T2>::decode(T2 & f) {
        for_each(f, AppendToTextBox());
    };
    template<> void Dec_s<int >::decode(int  & f) {};
    template<> void Dec_s<char>::decode(char & f) {};
    
    int main(int argc, char *argv[]) {
      Bar_s f = { 2, { 3, "abcd" } };
      Dec_s<Bar_s>::decode(f);
      return 0;
    }
    

    After some progressive exploration, here is a complete example. It uses more recent boost features, but does not build with early boost versions like 1.35.0. It works well with boost 1.47.0 and 1.51.0.

    The common header part:

    #include <typeinfo>
    #include <string>
    #include <boost/fusion/include/sequence.hpp>
    #include <boost/fusion/include/algorithm.hpp>
    #include <boost/fusion/include/adapt_struct.hpp>
    #include <boost/fusion/include/is_sequence.hpp>
    #include <boost/mpl/eval_if.hpp>
    #include <boost/type_traits.hpp> // is_array, is_class, remove_bounds
    #include <boost/lexical_cast.hpp>
    #include <cxxabi.h>
    #include <stdio.h>
    
    extern int dec_indents; /* 0, 4, 8, ... */
    struct NL {
        static void print() { printf("\n");
            for (int i=0; i<dec_indents; i++) printf(" ");
        }
    };
    
    using namespace boost::fusion;
    

    Then the common decoder with output formatting:

    template <typename T2> struct Dec_s;
    
    template <typename S, typename N> struct Comma {
      static inline void comma() { printf(" , "); }
    };
    template <typename S> struct Comma<S, typename
     boost::mpl::prior<typename boost::fusion::result_of::size<S>::type >::type> {
       static inline void comma() {}
    };
    
    template <typename S, typename N> struct DecImplSeqItr_s {
      typedef typename boost::fusion::result_of::value_at<S, N>::type current_t;
      typedef typename boost::mpl::next<N>::type next_t;
      typedef boost::fusion::extension::struct_member_name<S, N::value> name_t;
      static inline void decode(S& s) {
        printf(" \"%s\" = ", name_t::call() );
        Dec_s<current_t>::decode(boost::fusion::at<N>(s));
        Comma<S, N>::comma();  // Insert comma or not
        DecImplSeqItr_s<S, next_t>::decode(s);
      }
    };
    template <typename S>
    struct DecImplSeqItr_s<S, typename boost::fusion::result_of::size<S>::type > {
        static inline void decode(S& s) { }
    };
    template <typename S>
    struct DecImplSeqStart_s:DecImplSeqItr_s<S, boost::mpl::int_<0> > {};
    
    template <typename S> struct DecImplSeq_s {
      typedef DecImplSeq_s<S> type;
      static void decode(S & s) {
        printf("  struct  start --- { --- ");
        dec_indents += 4;
        NL::print();
        DecImplSeqStart_s<S>::decode(s);
        dec_indents -= 4;
        NL::print();
        printf("  struct  done  --- } --- ");
        NL::print();
      };
    };
    
    template <typename T2> struct DecImplArray_s {
      typedef DecImplArray_s<T2> type;
      typedef typename boost::remove_bounds<T2>::type slice_t;
      static const size_t size = sizeof(T2) / sizeof(slice_t);
      static inline void decode(T2 & t) {
        printf("  array start --- [ --- ");
        dec_indents += 4;
        NL::print();
        for(size_t idx=0; idx<size; idx++) {
            Dec_s<slice_t>::decode(t[idx]);
            if (idx < size-1) {
                NL::print(); printf(" , ");
            }
        }
        dec_indents -= 4;
        NL::print();
        printf("  array done  --- ] --- \n");
        NL::print();
      }
    };
    
    template <typename T2> struct DecImplVoid_s {
      typedef DecImplVoid_s<T2> type;
      static void decode(T2   & t) {
        int status = 0;
        const char *realname = abi::__cxa_demangle(typeid(t).name(),0,0,&status);
        printf(" type %s", realname);
        NL::print();
      };
    };
    
    template <typename T2> struct DecCalc_s {
      typedef
        typename boost::mpl::eval_if< traits::is_sequence<T2>, DecImplSeq_s<T2>,
        typename boost::mpl::eval_if< boost::is_array<T2>,
                                     boost::mpl::identity< DecImplArray_s<T2> >,
        DecImplVoid_s<T2>   > >
      ::type type;
    };
    
    template <typename T2> struct Dec_s : public DecCalc_s<T2>::type { };
    

    To use this common decoder, you can put it into a .h file, and use the following .c code:

    /* compile with g++ 4.5.1: g++ -I boost_1_47_0 test.cpp */
    
    #include "common_decoder.h"
    
    using namespace boost::fusion;
    
    int dec_indents=0;
    
    struct Foo_s { int i; typedef char j_t[10]; Foo_s::j_t j; };
    BOOST_FUSION_ADAPT_STRUCT( Foo_s, (int, i) (Foo_s::j_t, j) )
    
    struct Bar_s { int v; typedef Foo_s w_t[2]; Bar_s::w_t w; };
    BOOST_FUSION_ADAPT_STRUCT( Bar_s, (int, v) (Bar_s::w_t, w) )
    
    int main(int argc, char *argv[]) {
      Bar_s f = { 2, {{ 3, "abcd" },{ 4, "defg" }} };
      Dec_s<Bar_s>::decode(f);
      return 0;
    }
    
    0 讨论(0)
提交回复
热议问题