I have 2 dataframes.
Df1 = pd.DataFrame({\'name\': [\'Marc\', \'Jake\', \'Sam\', \'Brad\']
Df2 = pd.DataFrame({\'IDs\': [\'Jake\', \'John\', \'Marc\', \'Tony
This is one way. Convert to set for O(1) lookup and use astype(int)
to represent Boolean values as integers.
values = set(Df2['IDs'])
Df1['Match'] = Df1['name'].isin(values).astype(int)
By using merge
s=Df1.merge(Df2,left_on='name',right_on='IDs',how='left')
s.IDs=s.IDs.notnull().astype(int)
s
Out[68]:
name IDs
0 Marc 1
1 Jake 1
2 Sam 0
3 Brad 0
Use isin
Df1.name.isin(Df2.IDs).astype(int)
0 1
1 1
2 0
3 0
Name: name, dtype: int32
Show result in data frame
Df1.assign(InDf2=Df1.name.isin(Df2.IDs).astype(int))
name InDf2
0 Marc 1
1 Jake 1
2 Sam 0
3 Brad 0
In a Series object
pd.Series(Df1.name.isin(Df2.IDs).values.astype(int), Df1.name.values)
Marc 1
Jake 1
Sam 0
Brad 0
dtype: int32
This should do it:
Df1 = Df1.assign(result=Df1['name'].isin(Df2['IDs']).astype(int))