Using the code posted here, I created a nice hierarchical clustering:
Let\'s say t
I wrote some code to decondense the linkage matrix. It returns a dictionary containing the indexes of labels
that are grouped by each agglomeration step. I've only tried it out on the results of the complete
linkage clusters. The keys of the dict start at len(labels)+1
because initially, each label is treated as its own cluster. This may answer your question.
import pandas as pd
import numpy as np
from scipy.cluster.hierarchy import linkage
np.random.seed(123)
labels = ['ID_0','ID_1','ID_2','ID_3','ID_4']
X = np.corrcoef(np.random.random_sample([5,3])*10)
row_clusters = linkage(x_corr, method='complete')
def extract_levels(row_clusters, labels):
clusters = {}
for row in xrange(row_clusters.shape[0]):
cluster_n = row + len(labels)
# which clusters / labels are present in this row
glob1, glob2 = row_clusters[row, 0], row_clusters[row, 1]
# if this is a cluster, pull the cluster
this_clust = []
for glob in [glob1, glob2]:
if glob > (len(labels)-1):
this_clust += clusters[glob]
# if it isn't, add the label to this cluster
else:
this_clust.append(glob)
clusters[cluster_n] = this_clust
return clusters
Returns:
{5: [0.0, 2.0],
6: [3.0, 4.0],
7: [1.0, 0.0, 2.0],
8: [3.0, 4.0, 1.0, 0.0, 2.0]}
I know this is very late to the game, but I made a plotting object based on the code from the post here. It's registered on pip, so to install you just have to call
pip install pydendroheatmap
check out the project's github page here : https://github.com/themantalope/pydendroheatmap
I think you're on the right track. Let's try this:
import scipy
import scipy.cluster.hierarchy as sch
X = scipy.randn(100, 2) # 100 2-dimensional observations
d = sch.distance.pdist(X) # vector of (100 choose 2) pairwise distances
L = sch.linkage(d, method='complete')
ind = sch.fcluster(L, 0.5*d.max(), 'distance')
ind
will give you cluster indices for each of the 100 input observations. ind
depends on what method
you used in linkage
. Try method=single
, complete
, and average
. Then note how ind
differs.
Example:
In [59]: L = sch.linkage(d, method='complete')
In [60]: sch.fcluster(L, 0.5*d.max(), 'distance')
Out[60]:
array([5, 4, 2, 2, 5, 5, 1, 5, 5, 2, 5, 2, 5, 5, 1, 1, 5, 5, 4, 2, 5, 2, 5,
2, 5, 3, 5, 3, 5, 5, 5, 5, 5, 5, 5, 2, 2, 5, 5, 4, 1, 4, 5, 2, 1, 4,
2, 4, 2, 2, 5, 5, 5, 2, 5, 5, 3, 5, 5, 4, 5, 4, 5, 3, 5, 3, 5, 5, 5,
2, 3, 5, 5, 4, 5, 5, 2, 2, 5, 2, 2, 4, 1, 2, 1, 5, 2, 5, 5, 5, 1, 5,
4, 2, 4, 5, 2, 4, 4, 2])
In [61]: L = sch.linkage(d, method='single')
In [62]: sch.fcluster(L, 0.5*d.max(), 'distance')
Out[62]:
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1])
scipy.cluster.hierarchy
sure is confusing. In your link, I don't even recognize my own code!
You can also try cut_tree, it has a height parameter that should give you what you want for ultrametrics.