Given the following:
template
class A
{
public:
static const unsigned int ID = ?;
};
I want ID to generate a unique c
This seems to work OK for me:
template<typename T>
class Counted
{
public:
static int id()
{
static int v;
return (int)&v;
}
};
#include <iostream>
int main()
{
std::cout<<"Counted<int>::id()="<<Counted<int>::id()<<std::endl;
std::cout<<"Counted<char>::id()="<<Counted<char>::id()<<std::endl;
}
Using this constant expression counter:
template <class T>
class A
{
public:
static constexpr int ID() { return next(); }
};
class DUMMY { };
int main() {
std::cout << A<char>::ID() << std::endl;
std::cout << A<int>::ID() << std::endl;
std::cout << A<BETA>::ID() << std::endl;
std::cout << A<BETA>::ID() << std::endl;
return 0;
}
output: (GCC, C++14)
1
2
3
3
The downside is you will need to guess an upper bound on the number of derived classes for the constant expression counter to work.
This is sufficient assuming a standards conforming compiler (with respect to the one definition rule):
template<typename T>
class A
{
public:
static char ID_storage;
static const void * const ID;
};
template<typename T> char A<T>::ID_storage;
template<typename T> const void * const A<T>::ID= &A<T>::ID_storage;
From the C++ standard 3.2.5 One definition rule [basic.def.odr] (bold emphasis mine):
... If D is a template and is defined in more than one translation unit, then the last four requirements from the list above shall apply to names from the template’s enclosing scope used in the template definition (14.6.3), and also to dependent names at the point of instantiation (14.6.2). If the definitions of D satisfy all these requirements, then the program shall behave as if there were a single definition of D. If the definitions of D do not satisfy these requirements, then the behavior is undefined.
If non-monotonous values and an intptr_t
are acceptable:
template<typename T>
struct TypeID
{
private:
static char id_ref;
public:
static const intptr_t ID;
};
template<typename T>
char TypeID<T>::id_ref;
template<typename T>
const intptr_t TypeID<T>::ID = (intptr_t)&TypeID<T>::id_ref;
If you must have ints, or must have monotonically incrementing values, I think using static constructors is the only way to go:
// put this in a namespace
extern int counter;
template<typename T>
class Counter {
private:
Counter() {
ID_val = counter++;
}
static Counter init;
static int ID_val;
public:
static const int &ID;
};
template<typename T>
Counter<T> Counter<T>::init;
template<typename T>
int Counter<T>::ID_val;
template<typename T>
const int &Counter<T>::ID = Counter<T>::ID_val;
// in a non-header file somewhere
int counter;
Note that neither of these techniques is safe if you are sharing them between shared libraries and your application!
Here is a possible solution mostly based on templates:
#include<cstddef>
#include<functional>
#include<iostream>
template<typename T>
struct wrapper {
using type = T;
constexpr wrapper(std::size_t N): N{N} {}
const std::size_t N;
};
template<typename... T>
struct identifier: wrapper<T>... {
template<std::size_t... I>
constexpr identifier(std::index_sequence<I...>): wrapper<T>{I}... {}
template<typename U>
constexpr std::size_t get() const { return wrapper<U>::N; }
};
template<typename... T>
constexpr identifier<T...> ID = identifier<T...>{std::make_index_sequence<sizeof...(T)>{}};
// ---
struct A {};
struct B {};
constexpr auto id = ID<A, B>;
int main() {
switch(id.get<B>()) {
case id.get<A>():
std::cout << "A" << std::endl;
break;
case id.get<B>():
std::cout << "B" << std::endl;
break;
}
}
Note that this requires C++14.
All you have to do to associate sequential ids to a list of types is to provide that list to a template variable as in the example above:
constexpr auto id = ID<A, B>;
From that point on, you can get the given id for the given type by means of the get
method:
id.get<A>()
And that's all. You can use it in a switch
statement as requested and as shown in the example code.
Note that, as long as types are appended to the list of classes to which associate a numeric id, identifiers are the same after each compilation and during each execution.
If you want to remove a type from the list, you can still use fake types as placeholders, as an example:
template<typename> struct noLonger { };
constexpr auto id = ID<noLonger<A>, B>;
This will ensure that A
has no longer an associated id and the one given to B
won't change.
If you won't to definitely delete A
, you can use something like:
constexpr auto id = ID<noLonger<void>, B>;
Or whatever.
What I usually use is this:
template<typename>
void type_id(){}
using type_id_t = void(*)();
Since every instantiation of the function has it's own address, you can use that address to identify types:
// Work at compile time
constexpr type_id_t int_id = type_id<int>;
// Work at runtime too
std::map<type_id_t, std::any> types;
types[type_id<int>] = 4;
types[type_id<std::string>] = "values"s
// Find values
auto it = types.find(type_id<int>);
if (it != types.end()) {
// Found it!
}