Simplified dput() in R

后端 未结 7 1059
深忆病人
深忆病人 2020-12-02 15:24

I miss a way to add data to an SO answer in a transparent manner. My experience is that the structure object from dput() at times confuses inexperi

相关标签:
7条回答
  • 2020-12-02 16:04

    The package datapasta won't always work perfectly as it currently doesn't support all types, but it is clean and easy, i.e.,

    # install.packages(c("datapasta"), dependencies = TRUE)    
    datapasta::dpasta(Df)
    #> data.frame(
    #>            A = c(2, 2, 2, 6, 7, 8),
    #>            C = c(1L, 3L, 5L, NA, NA, NA),
    #>            B = as.factor(c("A", "G", "N", NA, "L", "L"))
    #> )
    
    0 讨论(0)
  • 2020-12-02 16:08

    3 solutions :

    • a wrapper around dput (handles standard data.frames, tibbles and lists)

    • a read.table solution (for data.frames)

    • a tibble::tribble solution (for data.frames, returning a tibble)

    All include n and random parameter which allow one to dput only the head of the data or sample it on the fly.

    dput_small1(Df)
    # Df <- data.frame(
    #   A = c(2, 2, 2, 6, 7, 8),
    #   B = structure(c(1L, 2L, 4L, NA, 3L, 3L), .Label = c("A", "G", "L", 
    #     "N"), class = "factor"),
    #   C = c(1L, 3L, 5L, NA, NA, NA) ,
    #   stringsAsFactors=FALSE)
    
    dput_small2(Df,stringsAsFactors=TRUE)
    # Df <- read.table(sep="\t", text="
    #   A   B   C
    #   2   A    1
    #   2   G    3
    #   2   N    5
    #   6   NA  NA
    #   7   L   NA
    #   8   L   NA", header=TRUE, stringsAsFactors=TRUE)
    
    dput_small3(Df)
    # Df <- tibble::tribble(
    #   ~A, ~B, ~C,
    #   2,           "A",          1L,
    #   2,           "G",          3L,
    #   2,           "N",          5L,
    #   6, NA_character_, NA_integer_,
    #   7,           "L", NA_integer_,
    #   8,           "L", NA_integer_
    # )
    # Df$B <- factor(Df$B)
    

    Wrapper around dput

    This option that gives an output very close to the one proposed in the question. It's quite general because it's actually wrapped around dput, but applied separately on columns.

    multiline means 'keep dput's default output laid out into multiple lines'.

    dput_small1<- function(x,
                           name=as.character(substitute(x)),
                           multiline = TRUE,
                           n=if ('list' %in% class(x)) length(x) else nrow(x),
                           random=FALSE,
                           seed = 1){
      name
      if('tbl_df' %in% class(x)) create_fun <- "tibble::tibble" else
        if('list' %in% class(x)) create_fun <- "list" else
          if('data.table' %in% class(x)) create_fun <- "data.table::data.table" else
            create_fun <- "data.frame"
        
        if(random) {
          set.seed(seed)
          if(create_fun == "list") x <- x[sample(1:length(x),n)] else 
            x <- x[sample(1:nrow(x),n),]
        } else {
          x <- head(x,n)
        }
        
        line_sep <- if (multiline) "\n    " else ""
        cat(sep='',name," <- ",create_fun,"(\n  ",
            paste0(unlist(
              Map(function(item,nm) paste0(nm,if(nm=="") "" else " = ",paste(capture.output(dput(item)),collapse=line_sep)),
                  x,if(is.null(names(x))) rep("",length(x)) else names(x))),
              collapse=",\n  "),
            if(create_fun == "data.frame") ",\n  stringsAsFactors = FALSE)" else "\n)")
    }
    
    dput_small1(list(1,2,c=3,d=4),"my_list",random=TRUE,n=3)
    # my_list <- list(
    #   2,
    #   d = 4,
    #   c = 3
    # )
    

    read.table solution

    For data.frames I find it comfortable however to have the input in a more explicit/tabular format.

    This can be reached using read.table, then reformatting automatically the type of columns that read.table wouldn't get right. Not as general as first solution but will work smoothly for 95% of the cases found on SO.

    dput_small2 <- function(df,
                            name=as.character(substitute(df)),
                            sep='\t',
                            header=TRUE,
                            stringsAsFactors = FALSE,
                            n= nrow(df),
                            random=FALSE,
                            seed = 1){
        name
        if(random) {
          set.seed(seed)
          df <- df[sample(1:nrow(df),n),]
        } else {
          df <- head(df,n)
        }
      cat(sep='',name,' <- read.table(sep="',sub('\t','\\\\t',sep),'", text="\n  ',
          paste(colnames(df),collapse=sep))
      df <- head(df,n)
      apply(df,1,function(x) cat(sep='','\n  ',paste(x,collapse=sep)))
      cat(sep='','", header=',header,', stringsAsFactors=',stringsAsFactors,')')
      
      sapply(names(df), function(x){
        if(is.character(df[[x]]) & suppressWarnings(identical(as.character(as.numeric(df[[x]])),df[[x]]))){ # if it's a character column containing numbers
          cat(sep='','\n',name,'$',x,' <- as.character(', name,'$',x,')')
        } else if(is.factor(df[[x]]) & !stringsAsFactors) { # if it's a factor and conversion is not automated
          cat(sep='','\n',name,'$',x,' <- factor(', name,'$',x,')')
        } else if(inherits(df[[x]], "POSIXct")){
          cat(sep='','\n',name,'$',x,' <- as.POSIXct(', name,'$',x,')')
        } else if(inherits(df[[x]], "Date")){
          cat(sep='','\n',name,'$',x,' <- as.Date(', name,'$',x,')')
        }})
      invisible(NULL)
    }
    

    Simplest case

    dput_small2(iris,n=6)
    

    will print:

    iris <- read.table(sep="\t", text="
      Sepal.Length  Sepal.Width Petal.Length    Petal.Width Species
      5.1   3.5 1.4 0.2  setosa
      4.9   3.0 1.4 0.2  setosa
      4.7   3.2 1.3 0.2  setosa
      4.6   3.1 1.5 0.2  setosa
      5.0   3.6 1.4 0.2  setosa
      5.4   3.9 1.7 0.4  setosa", header=TRUE, stringsAsFactors=FALSE)
    

    which in turn when executed will return :

    #   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
    # 1          5.1         3.5          1.4         0.2  setosa
    # 2          4.9         3.0          1.4         0.2  setosa
    # 3          4.7         3.2          1.3         0.2  setosa
    # 4          4.6         3.1          1.5         0.2  setosa
    # 5          5.0         3.6          1.4         0.2  setosa
    # 6          5.4         3.9          1.7         0.4  setosa
    
    str(iris)
    # 'data.frame': 6 obs. of  5 variables:
    # $ Sepal.Length: num  5.1 4.9 4.7 4.6 5 5.4
    # $ Sepal.Width : num  3.5 3 3.2 3.1 3.6 3.9
    # $ Petal.Length: num  1.4 1.4 1.3 1.5 1.4 1.7
    # $ Petal.Width : num  0.2 0.2 0.2 0.2 0.2 0.4
    # $ Species     : chr  " setosa" " setosa" " setosa" " setosa" ...
    

    more complex

    dummy data:

    test <- data.frame(a=1:5,
                       b=as.character(6:10),
                       c=letters[1:5],
                       d=factor(letters[6:10]),
                       e=Sys.time()+(1:5),
                       stringsAsFactors = FALSE)
    

    This:

    dput_small2(test,'df2')
    

    will print:

    df2 <- read.table(sep="\t", text="
      a b   c   d   e
      1 6   a   f   2018-02-15 11:53:17
      2 7   b   g   2018-02-15 11:53:18
      3 8   c   h   2018-02-15 11:53:19
      4 9   d   i   2018-02-15 11:53:20
      5 10  e   j   2018-02-15 11:53:21", header=TRUE, stringsAsFactors=FALSE)
    df2$b <- as.character(df2$b)
    df2$d <- factor(df2$d)
    df2$e <- as.POSIXct(df2$e)
    

    which in turn when executed will return :

    #   a  b c d                   e
    # 1 1  6 a f 2018-02-15 11:53:17
    # 2 2  7 b g 2018-02-15 11:53:18
    # 3 3  8 c h 2018-02-15 11:53:19
    # 4 4  9 d i 2018-02-15 11:53:20
    # 5 5 10 e j 2018-02-15 11:53:21
    
    str(df2)    
    # 'data.frame': 5 obs. of  5 variables:
    # $ a: int  1 2 3 4 5
    # $ b: chr  "6" "7" "8" "9" ...
    # $ c: chr  "a" "b" "c" "d" ...
    # $ d: Factor w/ 5 levels "f","g","h","i",..: 1 2 3 4 5
    # $ e: POSIXct, format: "2018-02-15 11:53:17" "2018-02-15 11:53:18" "2018-02-15 11:53:19" "2018-02-15 11:53:20" ...
    
    all.equal(df2,test)
    # [1] "Component “e”: Mean absolute difference: 0.4574251" # only some rounding error
    

    tribble solution

    The read.table option is very readable but not very general. with tribble pretty much any data type can be handled (though factors need adhoc fixing).

    This solution isn't so useful for OP's example but is great for list columns (see example below). To make use of the output, library tibble is required.

    Just as my first solution, it's a wrapper around dput, but instead of 'dputting' columns, i'm 'dputting' elements.

    dput_small3 <- function(df,
                            name=as.character(substitute(df)),
                            n= nrow(df),
                            random=FALSE,
                            seed = 1){
      name
      if(random) {
        set.seed(seed)
        df <- df[sample(1:nrow(df),n),]
      } else {
        df <- head(df,n)
      }
      df1 <- lapply(df,function(col) if(is.factor(col)) as.character(col) else col)
      dputs   <- sapply(df1,function(col){
        col_dputs <- sapply(col,function(elt) paste(capture.output(dput(elt)),collapse=""))
        max_char <- max(nchar(unlist(col_dputs)))
        sapply(col_dputs,function(elt) paste(c(rep(" ",max_char-nchar(elt)),elt),collapse=""))
      })
      lines   <- paste(apply(dputs,1,paste,collapse=", "),collapse=",\n  ")
      output  <- paste0(name," <- tibble::tribble(\n  ",
                        paste0("~",names(df),collapse=", "),
                        ",\n  ",lines,"\n)")
      cat(output)
      sapply(names(df), function(x) if(is.factor(df[[x]])) cat(sep='','\n',name,'$',x,' <- factor(', name,'$',x,')'))
      invisible(NULL)
    }
    
    dput_small3(dplyr::starwars[c(1:3,11)],"sw",n=6,random=TRUE)
    # sw <- tibble::tribble(
    #   ~name, ~height, ~mass, ~films,
    #   "Lando Calrissian", 177L,       79,                     c("Return of the Jedi", "The Empire Strikes Back"),
    #      "Finis Valorum", 170L, NA_real_,                                                   "The Phantom Menace",
    #       "Ki-Adi-Mundi", 198L,       82, c("Attack of the Clones", "The Phantom Menace", "Revenge of the Sith"),
    #           "Grievous", 216L,      159,                                                  "Revenge of the Sith",
    #     "Wedge Antilles", 170L,       77,       c("Return of the Jedi", "The Empire Strikes Back", "A New Hope"),
    #         "Wat Tambor", 193L,       48,                                                 "Attack of the Clones"
    # )
    
    0 讨论(0)
  • 2020-12-02 16:12

    You could simply write to a compressed connection.

    gz <- gzfile("foo.gz", open="wt")
    dput(Df, gz)
    close(gz)
    
    0 讨论(0)
  • 2020-12-02 16:18

    It might be worth mentioning memCompress and memDecompress here. For in-memory objects, it can reduce the size of large objects by compressing them as specified. And the latter reverses the compression. They're actually quite useful for package objects.

    sum(nchar(dput(DF)))
    # [1] 64
    ( mDF <- memCompress(as.character(DF)) )
    # [1] 78 9c 4b d6 30 d2 51 80 20 33 1d 05 73 1d 05 0b 4d ae 64 0d 3f 47 1d 05 64 0c 14 b7 04 89 1b ea 28 18 eb 28 98 22 4b 6a 02 00 a8 ba 0c d2
    length(mDF)
    # [1] 46
    cat(mdDF <- memDecompress(mDF, "gzip", TRUE))
    # c(2, 2, 2, 6, 7, 8)
    # c(NA, NA, NA, NA, 7, 9)
    # c(1, 3, 5, NA, NA, NA)
    nchar(mdDF)
    # [1] 66
    

    I haven't quite determined if the data frame can be reassembled easily, but I'm sure it can be.

    0 讨论(0)
  • 2020-12-02 16:20

    There is also the read.so package, which I really like, in particular to read SO data. It works for tibbles as well.

    #devtools::install_github("alistaire47/read.so")
    Df <- data.frame(A = c(2, 2, 2, 6, 7, 8),
                     B = c("A", "G", "N", NA, "L", "L"),
                     C = c(1L, 3L, 5L, NA, NA, NA))
    
    read.so::write.so(Df)
    
    #> Df <- data.frame(
    #>   A = c(2, 2, 2, 6, 7, 8),
    #>   B = c("A", "G", "N", NA, "L", "L"),
    #>   C = c(1L, 3L, 5L, NA, NA, NA)
    #> )
    
    0 讨论(0)
  • 2020-12-02 16:22

    We could set control to NULL to simplify:

    dput(Df, control = NULL)
    # list(A = c(2, 2, 2, 6, 7, 8), B = c(NA, NA, NA, NA, 7, 9), C = c(1, 3, 5, NA, NA, NA))
    

    Then wrap it with data.frame:

    data.frame(dput(Df, control = NULL))
    

    Edit: To avoid factor columns getting converted to numbers, we could convert them to character before calling dput:

    dput_small <- function(d){
      ix <- sapply(d, is.factor)
      d[ix] <- lapply(d[ix], as.character)
      dput(d, control = NULL)
      }
    
    0 讨论(0)
提交回复
热议问题