I recently heard about ternary search in which we divide an array into 3 parts and compare. Here there will be two comparisons but it reduces the array to n/3. Why don\'t p
"Terinary" (ternary?) search is more efficient in the best case, which would involve searching for the first element (or perhaps the last, depending on which comparison you do first). For elements farther from the end you're checking first, while two comparisons would narrow the array by 2/3 each time, the same two comparisons with binary search would narrow the search space by 3/4.
Add to that, binary search is simpler. You just compare and get one half or the other, rather than compare, if less than get the first third, else compare, if less than get the second third, else get the last third.
Here's some random experimental evidence that I haven't vetted at all showing that it's slower than binary search.
Theoretically the minimum of k/ln(k)
is achieved at e and since 3 is closer to e than 2 it requires less comparisons. You can check that 3/ln(3) = 2.73..
and 2/ln(2) = 2.88..
The reason why binary search could be faster is that the code for it will have less branches and will run faster on modern CPUs.
Ternary search can be effectively used on parallel architectures - FPGAs and ASICs. For example if internal FPGA memory required for search is less than half of the FPGA resource, you can make a duplicate memory block. This would allow to simultaneously access two different memory addresses and do all comparisons in a single clock cycle. This is one of the reasons why 100MHz FPGA can sometimes outperform the 4GHz CPU :)
Actually, people do use k-ary trees for arbitrary k.
This is, however, a tradeoff.
To find an element in a k-ary tree, you need around k*ln(N)/ln(k) operations (remember the change-of-base formula). The larger your k is, the more overall operations you need.
The logical extension of what you are saying is "why don't people use an N-ary tree for N data elements?". Which, of course, would be an array.
The only way a ternary search can be faster than a binary search is if a 3-way partition determination can be done for less than about 1.55 times the cost of a 2-way comparison. If the items are stored in a sorted array, the 3-way determination will on average be 1.66 times as expensive as a 2-way determination. If information is stored in a tree, however, the cost to fetch information is high relative to the cost of actually comparing, and cache locality means the cost of randomly fetching a pair of related data is not much worse than the cost of fetching a single datum, a ternary or n-way tree may improve efficiency greatly.