I saw this question, and pop up this idea.
#include<iostream>
#include<string>
#include<cmath>
using namespace std;
int main()
{
int n, power=0;
cout<<"enter a number"<<endl;
cin>>n;
if (n>0){
for(int i=0; i<=n; i++)
{
int r=n%3;
n=n/3;
if (r==0){
power++;
}
else{
cout<<"not exactly power of 3";
return 0;
}
}
}
cout<<"the power is "<<power<<endl;
}
while (n % 3 == 0) {
n /= 3;
}
return n == 1;
Note that 1 is the zeroth power of three.
Edit: You also need to check for zero before the loop, as the loop will not terminate for n = 0 (thanks to Bruno Rothgiesser).
Very interesting question, I like the answer from starblue, and this is a variation of his algorithm which will converge little bit faster to the solution:
private bool IsPow3(int n)
{
if (n == 0) return false;
while (n % 9 == 0)
{
n /= 9;
}
return (n == 1 || n == 3);
}
The fastest solution is either testing if n > 0 && 3**19 % n == 0
as given in another answer or perfect hashing (below). First I'm giving two multiplication-based solutions.
I wonder why everybody missed that multiplication is much faster than division:
for (int i=0, pow=1; i<=19, pow*=3; ++i) {
if (pow >= n) {
return pow == n;
}
}
return false;
Just try all powers, stop when it grew too big. Avoid overflow as 3**19 = 0x4546B3DB
is the biggest power fitting in signed 32-bit int.
Binary search could look like
int pow = 1;
int next = pow * 6561; // 3**8
if (n >= next) pow = next;
next = pow * 81; // 3**4
if (n >= next) pow = next;
next = pow * 81; // 3**4; REPEATED
if (n >= next) pow = next;
next = pow * 9; // 3**2
if (n >= next) pow = next;
next = pow * 3; // 3**1
if (n >= next) pow = next;
return pow == next;
One step is repeated, so that the maximum exponent 19 = 8+4+4+2+1
can exactly be reached.
There are 20 powers of three fitting into a signed 32-bit int, so we take a table of 32 elements. With some experimentation, I found the perfect hash function
def hash(x):
return (x ^ (x>>1) ^ (x>>2)) & 31;
mapping each power to a distinct index between 0 and 31. The remaining stuff is trivial:
// Create a table and fill it with some power of three.
table = [1 for i in range(32)]
// Fill the buckets.
for n in range(20): table[hash(3**n)] = 3**n;
Now we have
table = [
1162261467, 1, 3, 729, 14348907, 1, 1, 1,
1, 1, 19683, 1, 2187, 81, 1594323, 9,
27, 43046721, 129140163, 1, 1, 531441, 243, 59049,
177147, 6561, 1, 4782969, 1, 1, 1, 387420489]
and can test very fast via
def isPowerOfThree(x):
return table[hash(x)] == x
How large is your input? With O(log(N)) memory you can do faster, O(log(log(N)). Precompute the powers of 3 and then do a binary search on the precomputed values.
I find myself slightly thinking that if by 'integer' you mean 'signed 32-bit integer', then (pseudocode)
return (n == 1)
or (n == 3)
or (n == 9)
...
or (n == 1162261467)
has a certain beautiful simplicity to it (the last number is 3^19, so there aren't an absurd number of cases). Even for an unsigned 64-bit integer there still be only 41 cases (thanks @Alexandru for pointing out my brain-slip). And of course would be impossible for arbitrary-precision arithmetic...