This is a long text. Please bear with me. Boiled down, the question is: Is there a workable in-place radix sort algorithm?
Performance-wise you might want to look at a more general string-comparison sorting algorithms.
Currently you wind up touching every element of every string, but you can do better!
In particular, a burst sort is a very good fit for this case. As a bonus, since burstsort is based on tries, it works ridiculously well for the small alphabet sizes used in DNA/RNA, since you don't need to build any sort of ternary search node, hash or other trie node compression scheme into the trie implementation. The tries may be useful for your suffix-array-like final goal as well.
A decent general purpose implementation of burstsort is available on source forge at http://sourceforge.net/projects/burstsort/ - but it is not in-place.
For comparison purposes, The C-burstsort implementation covered at http://www.cs.mu.oz.au/~rsinha/papers/SinhaRingZobel-2006.pdf benchmarks 4-5x faster than quicksort and radix sorts for some typical workloads.
While the accepted answer perfectly answers the description of the problem, I've reached this place looking in vain for an algorithm to partition inline an array into N parts. I've written one myself, so here it is.
Warning: this is not a stable partitioning algorithm, so for multilevel partitioning, one must repartition each resulting partition instead of the whole array. The advantage is that it is inline.
The way it helps with the question posed is that you can repeatedly partition inline based on a letter of the string, then sort the partitions when they are small enough with the algorithm of your choice.
function partitionInPlace(input, partitionFunction, numPartitions, startIndex=0, endIndex=-1) {
if (endIndex===-1) endIndex=input.length;
const starts = Array.from({ length: numPartitions + 1 }, () => 0);
for (let i = startIndex; i < endIndex; i++) {
const val = input[i];
const partByte = partitionFunction(val);
starts[partByte]++;
}
let prev = startIndex;
for (let i = 0; i < numPartitions; i++) {
const p = prev;
prev += starts[i];
starts[i] = p;
}
const indexes = [...starts];
starts[numPartitions] = prev;
let bucket = 0;
while (bucket < numPartitions) {
const start = starts[bucket];
const end = starts[bucket + 1];
if (end - start < 1) {
bucket++;
continue;
}
let index = indexes[bucket];
if (index === end) {
bucket++;
continue;
}
let val = input[index];
let destBucket = partitionFunction(val);
if (destBucket === bucket) {
indexes[bucket] = index + 1;
continue;
}
let dest;
do {
dest = indexes[destBucket] - 1;
let destVal;
let destValBucket = destBucket;
while (destValBucket === destBucket) {
dest++;
destVal = input[dest];
destValBucket = partitionFunction(destVal);
}
input[dest] = val;
indexes[destBucket] = dest + 1;
val = destVal;
destBucket = destValBucket;
} while (dest !== index)
}
return starts;
}
dsimcha's MSB radix sort looks nice, but Nils gets closer to the heart of the problem with the observation that cache locality is what's killing you at large problem sizes.
I suggest a very simple approach:
m
for which a radix sort is efficient.m
elements at a time, radix sort them, and write them out (to a memory buffer if you have enough memory, but otherwise to file), until you exhaust your input.Mergesort is the most cache-friendly sorting algorithm I'm aware of: "Read the next item from either array A or B, then write an item to the output buffer." It runs efficiently on tape drives. It does require 2n
space to sort n
items, but my bet is that the much-improved cache locality you'll see will make that unimportant -- and if you were using a non-in-place radix sort, you needed that extra space anyway.
Please note finally that mergesort can be implemented without recursion, and in fact doing it this way makes clear the true linear memory access pattern.
I would burstsort a packed-bit representation of the strings. Burstsort is claimed to have much better locality than radix sorts, keeping the extra space usage down with burst tries in place of classical tries. The original paper has measurements.
I've never seen an in-place radix sort, and from the nature of the radix-sort I doubt that it is much faster than a out of place sort as long as the temporary array fits into memory.
Reason:
The sorting does a linear read on the input array, but all writes will be nearly random. From a certain N upwards this boils down to a cache miss per write. This cache miss is what slows down your algorithm. If it's in place or not will not change this effect.
I know that this will not answer your question directly, but if sorting is a bottleneck you may want to have a look at near sorting algorithms as a preprocessing step (the wiki-page on the soft-heap may get you started).
That could give a very nice cache locality boost. A text-book out-of-place radix sort will then perform better. The writes will still be nearly random but at least they will cluster around the same chunks of memory and as such increase the cache hit ratio.
I have no idea if it works out in practice though.
Btw: If you're dealing with DNA strings only: You can compress a char into two bits and pack your data quite a lot. This will cut down the memory requirement by factor four over a naiive representation. Addressing becomes more complex, but the ALU of your CPU has lots of time to spend during all the cache-misses anyway.
You might try using a trie. Sorting the data is simply iterating through the dataset and inserting it; the structure is naturally sorted, and you can think of it as similar to a B-Tree (except instead of making comparisons, you always use pointer indirections).
Caching behavior will favor all of the internal nodes, so you probably won't improve upon that; but you can fiddle with the branching factor of your trie as well (ensure that every node fits into a single cache line, allocate trie nodes similar to a heap, as a contiguous array that represents a level-order traversal). Since tries are also digital structures (O(k) insert/find/delete for elements of length k), you should have competitive performance to a radix sort.